{"title":"一种低功耗的容错寄存器文件设计方法","authors":"Mojtaba Amiri-Kamalabad, S. Miremadi, M. Fazeli","doi":"10.1109/VLSI.2008.53","DOIUrl":null,"url":null,"abstract":"Recently, the trade-off between power consumption and fault tolerance in embedded processors has been highlighted. This paper proposes an approach to reduce dynamic power of conventional high-level fault-tolerant techniques used in the register file of processors, without affecting the effectiveness of the fault-tolerant techniques. The power reduction is based on the reduction of dynamic power of the unaccessed parts of the register file. This approach is applied to three transient fault-tolerant techniques: single error correction (SEC) Hamming code, duplication with parity, and triple modular redundancy (TMR). As a case study, this approach is implemented on the register file of an OpenRISC 1200 processor. The experimental calculation of the power consumption shows that the proposed approach saves about 67%, 62%, and 58% power for TMR, duplication with parity, and SEC Hamming code, respectively.","PeriodicalId":143886,"journal":{"name":"21st International Conference on VLSI Design (VLSID 2008)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Power Efficient Approach to Fault-Tolerant Register File Design\",\"authors\":\"Mojtaba Amiri-Kamalabad, S. Miremadi, M. Fazeli\",\"doi\":\"10.1109/VLSI.2008.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the trade-off between power consumption and fault tolerance in embedded processors has been highlighted. This paper proposes an approach to reduce dynamic power of conventional high-level fault-tolerant techniques used in the register file of processors, without affecting the effectiveness of the fault-tolerant techniques. The power reduction is based on the reduction of dynamic power of the unaccessed parts of the register file. This approach is applied to three transient fault-tolerant techniques: single error correction (SEC) Hamming code, duplication with parity, and triple modular redundancy (TMR). As a case study, this approach is implemented on the register file of an OpenRISC 1200 processor. The experimental calculation of the power consumption shows that the proposed approach saves about 67%, 62%, and 58% power for TMR, duplication with parity, and SEC Hamming code, respectively.\",\"PeriodicalId\":143886,\"journal\":{\"name\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI.2008.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on VLSI Design (VLSID 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI.2008.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Power Efficient Approach to Fault-Tolerant Register File Design
Recently, the trade-off between power consumption and fault tolerance in embedded processors has been highlighted. This paper proposes an approach to reduce dynamic power of conventional high-level fault-tolerant techniques used in the register file of processors, without affecting the effectiveness of the fault-tolerant techniques. The power reduction is based on the reduction of dynamic power of the unaccessed parts of the register file. This approach is applied to three transient fault-tolerant techniques: single error correction (SEC) Hamming code, duplication with parity, and triple modular redundancy (TMR). As a case study, this approach is implemented on the register file of an OpenRISC 1200 processor. The experimental calculation of the power consumption shows that the proposed approach saves about 67%, 62%, and 58% power for TMR, duplication with parity, and SEC Hamming code, respectively.