并行坐标下高维数据的交互式局部聚类操作

Peihong Guo, He Xiao, Zuchao Wang, Xiaoru Yuan
{"title":"并行坐标下高维数据的交互式局部聚类操作","authors":"Peihong Guo, He Xiao, Zuchao Wang, Xiaoru Yuan","doi":"10.1109/PACIFICVIS.2010.5429608","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approach of clustering data in parallel coordinates through interactive local operations. Different from many other methods in which clustering is globally applied to the whole dataset, our interactive scheme allows users to directly apply attractive and repulsive operators at regions of interests, taking advantages of an electricity interaction metaphor, for clutter reduction and cluster detection. Our design enables users to interact directly with the parallel coordinate plots and provides great flexibility in exploring and revealing underlying patterns. With instant feedback, our work allows users to dynamically adjust the clustering parameters to reach an optimum. We also supply the user with a graph indicating the logical relationship between clusters. Our experiments show that our scheme is more efficient than traditional methods in performing visual analysis tasks.","PeriodicalId":149295,"journal":{"name":"2010 IEEE Pacific Visualization Symposium (PacificVis)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Interactive local clustering operations for high dimensional data in parallel coordinates\",\"authors\":\"Peihong Guo, He Xiao, Zuchao Wang, Xiaoru Yuan\",\"doi\":\"10.1109/PACIFICVIS.2010.5429608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an approach of clustering data in parallel coordinates through interactive local operations. Different from many other methods in which clustering is globally applied to the whole dataset, our interactive scheme allows users to directly apply attractive and repulsive operators at regions of interests, taking advantages of an electricity interaction metaphor, for clutter reduction and cluster detection. Our design enables users to interact directly with the parallel coordinate plots and provides great flexibility in exploring and revealing underlying patterns. With instant feedback, our work allows users to dynamically adjust the clustering parameters to reach an optimum. We also supply the user with a graph indicating the logical relationship between clusters. Our experiments show that our scheme is more efficient than traditional methods in performing visual analysis tasks.\",\"PeriodicalId\":149295,\"journal\":{\"name\":\"2010 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACIFICVIS.2010.5429608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2010.5429608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

在本文中,我们提出了一种通过交互式局部操作在并行坐标中聚类数据的方法。与许多其他将聚类全局应用于整个数据集的方法不同,我们的交互方案允许用户直接在感兴趣的区域应用吸引和排斥算子,利用电交互比喻,用于杂波减少和聚类检测。我们的设计使用户能够直接与平行坐标图进行交互,并在探索和揭示潜在模式方面提供了很大的灵活性。通过即时反馈,我们的工作允许用户动态调整聚类参数以达到最佳。我们还为用户提供了一个表示集群之间逻辑关系的图表。我们的实验表明,我们的方案在执行视觉分析任务时比传统方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive local clustering operations for high dimensional data in parallel coordinates
In this paper, we propose an approach of clustering data in parallel coordinates through interactive local operations. Different from many other methods in which clustering is globally applied to the whole dataset, our interactive scheme allows users to directly apply attractive and repulsive operators at regions of interests, taking advantages of an electricity interaction metaphor, for clutter reduction and cluster detection. Our design enables users to interact directly with the parallel coordinate plots and provides great flexibility in exploring and revealing underlying patterns. With instant feedback, our work allows users to dynamically adjust the clustering parameters to reach an optimum. We also supply the user with a graph indicating the logical relationship between clusters. Our experiments show that our scheme is more efficient than traditional methods in performing visual analysis tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信