基于代价敏感深度神经网络的高度不平衡书目数据作者匹配分类

Firdaus, Suci Dwi Lestari, S. Nurmaini, R. F. Malik, M. N. Rachmatullah, Annisa Darmawahyuni, Ade Iriani Sapitri, Mohammad El Qiliqsandy
{"title":"基于代价敏感深度神经网络的高度不平衡书目数据作者匹配分类","authors":"Firdaus, Suci Dwi Lestari, S. Nurmaini, R. F. Malik, M. N. Rachmatullah, Annisa Darmawahyuni, Ade Iriani Sapitri, Mohammad El Qiliqsandy","doi":"10.1109/ICIMCIS53775.2021.9699331","DOIUrl":null,"url":null,"abstract":"One of the stages before classifying the author matching is to combine the data, in this case the resulting data becomes highly imbalanced dataset, between the author who matches or the author who does not match. This paper presents a method to solve the highly imbalanced problem in author matching classification. The method used Cost-Sensitive Deep Neural Network (CSDNN). CSDNN will consider costs that vary from the type of data misclassification. As text feature similarity measures, we use cosine similarity. And we use Digital Bibliography & Library Project (DBLP) data as a dataset. The result is outstanding in terms of specificity 0.99, precision 0.95, recall 0.96, f1-score 0.96, and accuracy 0.99.","PeriodicalId":250460,"journal":{"name":"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Author Matching Classification on a Highly Imbalanced Bibliographic Data using Cost-Sensitive Deep Neural Network\",\"authors\":\"Firdaus, Suci Dwi Lestari, S. Nurmaini, R. F. Malik, M. N. Rachmatullah, Annisa Darmawahyuni, Ade Iriani Sapitri, Mohammad El Qiliqsandy\",\"doi\":\"10.1109/ICIMCIS53775.2021.9699331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the stages before classifying the author matching is to combine the data, in this case the resulting data becomes highly imbalanced dataset, between the author who matches or the author who does not match. This paper presents a method to solve the highly imbalanced problem in author matching classification. The method used Cost-Sensitive Deep Neural Network (CSDNN). CSDNN will consider costs that vary from the type of data misclassification. As text feature similarity measures, we use cosine similarity. And we use Digital Bibliography & Library Project (DBLP) data as a dataset. The result is outstanding in terms of specificity 0.99, precision 0.95, recall 0.96, f1-score 0.96, and accuracy 0.99.\",\"PeriodicalId\":250460,\"journal\":{\"name\":\"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMCIS53775.2021.9699331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMCIS53775.2021.9699331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在对作者匹配进行分类之前的一个阶段是对数据进行组合,在这种情况下,结果数据成为高度不平衡的数据集,在匹配的作者和不匹配的作者之间。提出了一种解决作者匹配分类高度不平衡问题的方法。该方法采用代价敏感深度神经网络(CSDNN)。CSDNN将考虑不同类型的数据错误分类的成本。作为文本特征相似度度量,我们使用余弦相似度。我们使用数字书目与图书馆项目(DBLP)数据作为数据集。特异性0.99,精密度0.95,召回率0.96,f1评分0.96,准确度0.99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Author Matching Classification on a Highly Imbalanced Bibliographic Data using Cost-Sensitive Deep Neural Network
One of the stages before classifying the author matching is to combine the data, in this case the resulting data becomes highly imbalanced dataset, between the author who matches or the author who does not match. This paper presents a method to solve the highly imbalanced problem in author matching classification. The method used Cost-Sensitive Deep Neural Network (CSDNN). CSDNN will consider costs that vary from the type of data misclassification. As text feature similarity measures, we use cosine similarity. And we use Digital Bibliography & Library Project (DBLP) data as a dataset. The result is outstanding in terms of specificity 0.99, precision 0.95, recall 0.96, f1-score 0.96, and accuracy 0.99.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信