B. Hughes, R. Chu, J. Lazar, S. Hulsey, A. Garrido, D. Zehnder, Marcel Musni, K. Boutros
{"title":"正常关断GaN开关400V在1.4ns使用超低电阻和电感栅极驱动","authors":"B. Hughes, R. Chu, J. Lazar, S. Hulsey, A. Garrido, D. Zehnder, Marcel Musni, K. Boutros","doi":"10.1109/WIPDA.2013.6695566","DOIUrl":null,"url":null,"abstract":"A turn-on time of 1.4ns is measured in a normally-off GaN synchronous boost converter switching 400V. The high-speed performance is achieved by significantly improving the GaN switches, packaging and gate drive. A recently developed normally-off, AlN-based insulating-gate, AlGaN/GaN-on-Si HFET operates with a high gate voltage of 6V [1]. The higher gate voltage increases gate current for faster switching. A Multi-Chip-Module (MCM) allows paralleling GaN switch up to 20Arms with low parasitic inductance of ~ 3.6nH in the power loop. The gate drive uses 50mΩ bare MOSFETs integrated onto the MCM to significantly reduce gate driver inductance to 1nH. The very fast switching results in large drain undershoot of 200V, and gate overshoot of more than 6V. Increasing the gate turn-on resistance to 1.4Ω eliminates gate voltage overshoot and reduces drain voltage overshoot to ~20V, at the cost of an increased turn-on time of 3ns.","PeriodicalId":313351,"journal":{"name":"The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Normally-off GaN switching 400V in 1.4ns using an ultra-low resistance and inductance gate drive\",\"authors\":\"B. Hughes, R. Chu, J. Lazar, S. Hulsey, A. Garrido, D. Zehnder, Marcel Musni, K. Boutros\",\"doi\":\"10.1109/WIPDA.2013.6695566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A turn-on time of 1.4ns is measured in a normally-off GaN synchronous boost converter switching 400V. The high-speed performance is achieved by significantly improving the GaN switches, packaging and gate drive. A recently developed normally-off, AlN-based insulating-gate, AlGaN/GaN-on-Si HFET operates with a high gate voltage of 6V [1]. The higher gate voltage increases gate current for faster switching. A Multi-Chip-Module (MCM) allows paralleling GaN switch up to 20Arms with low parasitic inductance of ~ 3.6nH in the power loop. The gate drive uses 50mΩ bare MOSFETs integrated onto the MCM to significantly reduce gate driver inductance to 1nH. The very fast switching results in large drain undershoot of 200V, and gate overshoot of more than 6V. Increasing the gate turn-on resistance to 1.4Ω eliminates gate voltage overshoot and reduces drain voltage overshoot to ~20V, at the cost of an increased turn-on time of 3ns.\",\"PeriodicalId\":313351,\"journal\":{\"name\":\"The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2013.6695566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2013.6695566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Normally-off GaN switching 400V in 1.4ns using an ultra-low resistance and inductance gate drive
A turn-on time of 1.4ns is measured in a normally-off GaN synchronous boost converter switching 400V. The high-speed performance is achieved by significantly improving the GaN switches, packaging and gate drive. A recently developed normally-off, AlN-based insulating-gate, AlGaN/GaN-on-Si HFET operates with a high gate voltage of 6V [1]. The higher gate voltage increases gate current for faster switching. A Multi-Chip-Module (MCM) allows paralleling GaN switch up to 20Arms with low parasitic inductance of ~ 3.6nH in the power loop. The gate drive uses 50mΩ bare MOSFETs integrated onto the MCM to significantly reduce gate driver inductance to 1nH. The very fast switching results in large drain undershoot of 200V, and gate overshoot of more than 6V. Increasing the gate turn-on resistance to 1.4Ω eliminates gate voltage overshoot and reduces drain voltage overshoot to ~20V, at the cost of an increased turn-on time of 3ns.