利用不同的分类算法和颜色空间描述图像中物体的颜色命名

J. Sainui, Mananya Tongsamrit
{"title":"利用不同的分类算法和颜色空间描述图像中物体的颜色命名","authors":"J. Sainui, Mananya Tongsamrit","doi":"10.1145/3384613.3384622","DOIUrl":null,"url":null,"abstract":"In this paper, we study to name a color of an object in the given image, where the number of color names is 11 English basic color names, including pink, purple, red, orange, yellow, green, blue, gray, brown, black, and white. Our goal is to apply machine learning algorithms for assigning a color name to a principal object in images. Here, we evaluate three basic classification algorithms, namely Support Vector Machine (SVM), naïve Bayes, and k-Nearest Neighbor (k-NN). The feature vector of the object in an image is the pixel intensities represented in different color spaces including RGB, HSV, Lab and CYMK. We randomly collect the training pixel intensities with their corresponding color names from the images obtained from the Internet. We then evaluate three classification algorithms using the e-Bay dataset. The experimental results show that the linear SVM with Lab color space is the best choice for solving this task.","PeriodicalId":214098,"journal":{"name":"Proceedings of the 2020 12th International Conference on Computer and Automation Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Color Naming for Describing Object in Image using Different Classification Algorithms and Color Spaces\",\"authors\":\"J. Sainui, Mananya Tongsamrit\",\"doi\":\"10.1145/3384613.3384622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study to name a color of an object in the given image, where the number of color names is 11 English basic color names, including pink, purple, red, orange, yellow, green, blue, gray, brown, black, and white. Our goal is to apply machine learning algorithms for assigning a color name to a principal object in images. Here, we evaluate three basic classification algorithms, namely Support Vector Machine (SVM), naïve Bayes, and k-Nearest Neighbor (k-NN). The feature vector of the object in an image is the pixel intensities represented in different color spaces including RGB, HSV, Lab and CYMK. We randomly collect the training pixel intensities with their corresponding color names from the images obtained from the Internet. We then evaluate three classification algorithms using the e-Bay dataset. The experimental results show that the linear SVM with Lab color space is the best choice for solving this task.\",\"PeriodicalId\":214098,\"journal\":{\"name\":\"Proceedings of the 2020 12th International Conference on Computer and Automation Engineering\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 12th International Conference on Computer and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3384613.3384622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 12th International Conference on Computer and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384613.3384622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了给定图像中物体的颜色命名,其中颜色名称的数量为11个英文基本颜色名称,包括粉红色,紫色,红色,橙色,黄色,绿色,蓝色,灰色,棕色,黑色和白色。我们的目标是应用机器学习算法为图像中的主要对象分配颜色名称。在这里,我们评估了三种基本的分类算法,即支持向量机(SVM), naïve贝叶斯和k-最近邻(k-NN)。图像中物体的特征向量是在RGB、HSV、Lab和CYMK等不同颜色空间中表示的像素强度。我们从互联网上获得的图像中随机收集训练像素强度及其对应的颜色名称。然后,我们使用e-Bay数据集评估了三种分类算法。实验结果表明,具有Lab色彩空间的线性支持向量机是解决该问题的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color Naming for Describing Object in Image using Different Classification Algorithms and Color Spaces
In this paper, we study to name a color of an object in the given image, where the number of color names is 11 English basic color names, including pink, purple, red, orange, yellow, green, blue, gray, brown, black, and white. Our goal is to apply machine learning algorithms for assigning a color name to a principal object in images. Here, we evaluate three basic classification algorithms, namely Support Vector Machine (SVM), naïve Bayes, and k-Nearest Neighbor (k-NN). The feature vector of the object in an image is the pixel intensities represented in different color spaces including RGB, HSV, Lab and CYMK. We randomly collect the training pixel intensities with their corresponding color names from the images obtained from the Internet. We then evaluate three classification algorithms using the e-Bay dataset. The experimental results show that the linear SVM with Lab color space is the best choice for solving this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信