硅衬底共面波导的紧凑非线性模型

Z. Sun, P. Fay
{"title":"硅衬底共面波导的紧凑非线性模型","authors":"Z. Sun, P. Fay","doi":"10.1109/SMIC.2004.1398200","DOIUrl":null,"url":null,"abstract":"A wideband nonlinear equivalent circuit model for quasi-TEM coplanar waveguide (CPW) transmission lines fabricated on low-resistivity Si substrates is proposed and verified experimentally. The model includes nonlinear bias-dependent junction conductances and capacitances, which enable the model to scale with substrate doping concentration and transmission line geometry. Numerical calculation of the CPW capacitance, based on 2D solutions of Poisson's equation, as well as experimental investigations of the dependence of model parameters on substrate doping type (both n- and p-type) and doping concentration have been performed. Measurements of typical devices show excellent agreement between the model prediction and measured transmission line S-parameters from 100 MHz to 10 GHz. Analysis of the model indicates that a full back-to-back metal-semiconductor junction contact model is required for CPWs on n-type substrates, while the higher Schottky barrier height of typical metal contacts to p-type Si permits a simpler one-sided junction model for CPWs on p-type substrates.","PeriodicalId":288561,"journal":{"name":"Digest of Papers. 2004 Topical Meeting onSilicon Monolithic Integrated Circuits in RF Systems, 2004.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A compact nonlinear model for coplanar waveguides on silicon substrates\",\"authors\":\"Z. Sun, P. Fay\",\"doi\":\"10.1109/SMIC.2004.1398200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wideband nonlinear equivalent circuit model for quasi-TEM coplanar waveguide (CPW) transmission lines fabricated on low-resistivity Si substrates is proposed and verified experimentally. The model includes nonlinear bias-dependent junction conductances and capacitances, which enable the model to scale with substrate doping concentration and transmission line geometry. Numerical calculation of the CPW capacitance, based on 2D solutions of Poisson's equation, as well as experimental investigations of the dependence of model parameters on substrate doping type (both n- and p-type) and doping concentration have been performed. Measurements of typical devices show excellent agreement between the model prediction and measured transmission line S-parameters from 100 MHz to 10 GHz. Analysis of the model indicates that a full back-to-back metal-semiconductor junction contact model is required for CPWs on n-type substrates, while the higher Schottky barrier height of typical metal contacts to p-type Si permits a simpler one-sided junction model for CPWs on p-type substrates.\",\"PeriodicalId\":288561,\"journal\":{\"name\":\"Digest of Papers. 2004 Topical Meeting onSilicon Monolithic Integrated Circuits in RF Systems, 2004.\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Papers. 2004 Topical Meeting onSilicon Monolithic Integrated Circuits in RF Systems, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMIC.2004.1398200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Papers. 2004 Topical Meeting onSilicon Monolithic Integrated Circuits in RF Systems, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMIC.2004.1398200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种低电阻率硅衬底准瞬变电磁法共面波导(CPW)传输线的宽带非线性等效电路模型,并进行了实验验证。该模型包括非线性偏置相关的结电导和电容,这使得模型能够随衬底掺杂浓度和传输线几何形状而缩放。基于泊松方程的二维解对CPW电容进行了数值计算,并对模型参数与衬底掺杂类型(n型和p型)和掺杂浓度的关系进行了实验研究。典型器件的测量结果表明,在100 MHz至10 GHz范围内,模型预测与实测传输线s参数之间具有良好的一致性。模型分析表明,对于n型衬底上的cpw,需要一个完整的背靠背金属-半导体结接触模型,而对于p型衬底上的cpw,典型金属接触p型Si的肖特基势垒高度较高,从而允许一个更简单的单侧结模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A compact nonlinear model for coplanar waveguides on silicon substrates
A wideband nonlinear equivalent circuit model for quasi-TEM coplanar waveguide (CPW) transmission lines fabricated on low-resistivity Si substrates is proposed and verified experimentally. The model includes nonlinear bias-dependent junction conductances and capacitances, which enable the model to scale with substrate doping concentration and transmission line geometry. Numerical calculation of the CPW capacitance, based on 2D solutions of Poisson's equation, as well as experimental investigations of the dependence of model parameters on substrate doping type (both n- and p-type) and doping concentration have been performed. Measurements of typical devices show excellent agreement between the model prediction and measured transmission line S-parameters from 100 MHz to 10 GHz. Analysis of the model indicates that a full back-to-back metal-semiconductor junction contact model is required for CPWs on n-type substrates, while the higher Schottky barrier height of typical metal contacts to p-type Si permits a simpler one-sided junction model for CPWs on p-type substrates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信