{"title":"衬底偏压对Ω-Gate超薄盒纳米线MOS晶体管载流子输运影响的TCAD评估","authors":"F. Bergamaschi, M. Pavanello","doi":"10.1109/LAEDC51812.2021.9437923","DOIUrl":null,"url":null,"abstract":"In this work, the effects of substrate biasing on the electrical behavior of n-type Ω-gate SOI nanowire MOS transistors with thin buried oxide (BOX) and variable fin width are analyzed. The analysis is carried over through 3D TCAD simulations calibrated with experimental data. Mobility degradation is observed for negative back bias due to surface-related scattering mechanisms on the front gate channel, while mobility increase is verified for positive back bias values that induce conduction in both front and back channels. High back bias values, however, which activate the back channel prior to the front one, lead to degradation in carrier mobility. On-state-off-state current ratio reduces for positive back bias due to degradation in the subthreshold slope, while DIBL is worsened due to the reduced front gate control when the substrate’s positive electric field takes ahold of the inversion charges.","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TCAD Evaluation of the Substrate Bias Influence on the Carrier Transport of Ω-Gate Nanowire MOS Transistors with Ultra-Thin BOX\",\"authors\":\"F. Bergamaschi, M. Pavanello\",\"doi\":\"10.1109/LAEDC51812.2021.9437923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the effects of substrate biasing on the electrical behavior of n-type Ω-gate SOI nanowire MOS transistors with thin buried oxide (BOX) and variable fin width are analyzed. The analysis is carried over through 3D TCAD simulations calibrated with experimental data. Mobility degradation is observed for negative back bias due to surface-related scattering mechanisms on the front gate channel, while mobility increase is verified for positive back bias values that induce conduction in both front and back channels. High back bias values, however, which activate the back channel prior to the front one, lead to degradation in carrier mobility. On-state-off-state current ratio reduces for positive back bias due to degradation in the subthreshold slope, while DIBL is worsened due to the reduced front gate control when the substrate’s positive electric field takes ahold of the inversion charges.\",\"PeriodicalId\":112590,\"journal\":{\"name\":\"2021 IEEE Latin America Electron Devices Conference (LAEDC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Latin America Electron Devices Conference (LAEDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAEDC51812.2021.9437923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAEDC51812.2021.9437923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TCAD Evaluation of the Substrate Bias Influence on the Carrier Transport of Ω-Gate Nanowire MOS Transistors with Ultra-Thin BOX
In this work, the effects of substrate biasing on the electrical behavior of n-type Ω-gate SOI nanowire MOS transistors with thin buried oxide (BOX) and variable fin width are analyzed. The analysis is carried over through 3D TCAD simulations calibrated with experimental data. Mobility degradation is observed for negative back bias due to surface-related scattering mechanisms on the front gate channel, while mobility increase is verified for positive back bias values that induce conduction in both front and back channels. High back bias values, however, which activate the back channel prior to the front one, lead to degradation in carrier mobility. On-state-off-state current ratio reduces for positive back bias due to degradation in the subthreshold slope, while DIBL is worsened due to the reduced front gate control when the substrate’s positive electric field takes ahold of the inversion charges.