X-ANOVA对Android恶意软件分析的功能进行了排名

Rincy Raphael, P. Vinod, Bini Omman
{"title":"X-ANOVA对Android恶意软件分析的功能进行了排名","authors":"Rincy Raphael, P. Vinod, Bini Omman","doi":"10.1109/INDICON.2014.7030646","DOIUrl":null,"url":null,"abstract":"The proposed framework represents a static analysis framework to classify the Android malware. From each Android .apk file, three distinct features likely (a) opcodes (b) methods and (c) permissions are extracted. Analysis of Variance (X-ANOVA) is used to rank features that have high difference in variance in malware and benign training set. To achieve this conventional ANOVA was modified; and a novel technique referred to us as X-ANOVA is proposed. Especially, X-ANOVA is utilized to reduce the dimensions of large feature space in order to minimize classification error and processing overhead incurred during the learning phase. Accuracy of the proposed system is computed using three classifiers (J48, ADABoostM1, RandomForest) and the performance is compared with voted classification approach. An overall accuracy of 88.30% with opcodes, 87.81% with method and an accuracy of 90.47% is obtained considering permission as features, using independent classifiers. However, using voted classification approach, an accuracy of 88.27% and 87.53% are obtained respectively for features like opcodes and methods. Also, an improved accuracy of 90.63% was ascertained considering permissions. Initial results are promising which demonstrate that the proposed approach can be used to assist mobile antiviruses.","PeriodicalId":409794,"journal":{"name":"2014 Annual IEEE India Conference (INDICON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"X-ANOVA ranked features for Android malware analysis\",\"authors\":\"Rincy Raphael, P. Vinod, Bini Omman\",\"doi\":\"10.1109/INDICON.2014.7030646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed framework represents a static analysis framework to classify the Android malware. From each Android .apk file, three distinct features likely (a) opcodes (b) methods and (c) permissions are extracted. Analysis of Variance (X-ANOVA) is used to rank features that have high difference in variance in malware and benign training set. To achieve this conventional ANOVA was modified; and a novel technique referred to us as X-ANOVA is proposed. Especially, X-ANOVA is utilized to reduce the dimensions of large feature space in order to minimize classification error and processing overhead incurred during the learning phase. Accuracy of the proposed system is computed using three classifiers (J48, ADABoostM1, RandomForest) and the performance is compared with voted classification approach. An overall accuracy of 88.30% with opcodes, 87.81% with method and an accuracy of 90.47% is obtained considering permission as features, using independent classifiers. However, using voted classification approach, an accuracy of 88.27% and 87.53% are obtained respectively for features like opcodes and methods. Also, an improved accuracy of 90.63% was ascertained considering permissions. Initial results are promising which demonstrate that the proposed approach can be used to assist mobile antiviruses.\",\"PeriodicalId\":409794,\"journal\":{\"name\":\"2014 Annual IEEE India Conference (INDICON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Annual IEEE India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDICON.2014.7030646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2014.7030646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

该框架代表了一个对Android恶意软件进行分类的静态分析框架。从每个Android .apk文件中,可以提取三个不同的特征(a)操作码(b)方法和(c)权限。方差分析(X-ANOVA)用于对恶意和良性训练集中方差差异较大的特征进行排序。为此,对常规方差分析进行了修改;并提出了一种称为x -方差分析的新技术。特别是利用X-ANOVA对较大的特征空间进行降维,以最小化学习阶段的分类误差和处理开销。采用J48、ADABoostM1、RandomForest三种分类器计算了系统的准确率,并与投票分类方法进行了性能比较。采用独立分类器,以操作码为特征,整体准确率为88.30%,以方法为特征,整体准确率为87.81%,以权限为特征,整体准确率为90.47%。然而,使用投票分类方法,对操作码和方法等特征的准确率分别为88.27%和87.53%。在考虑权限的情况下,准确率达到90.63%。初步结果表明,所提出的方法可以用于辅助移动反病毒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
X-ANOVA ranked features for Android malware analysis
The proposed framework represents a static analysis framework to classify the Android malware. From each Android .apk file, three distinct features likely (a) opcodes (b) methods and (c) permissions are extracted. Analysis of Variance (X-ANOVA) is used to rank features that have high difference in variance in malware and benign training set. To achieve this conventional ANOVA was modified; and a novel technique referred to us as X-ANOVA is proposed. Especially, X-ANOVA is utilized to reduce the dimensions of large feature space in order to minimize classification error and processing overhead incurred during the learning phase. Accuracy of the proposed system is computed using three classifiers (J48, ADABoostM1, RandomForest) and the performance is compared with voted classification approach. An overall accuracy of 88.30% with opcodes, 87.81% with method and an accuracy of 90.47% is obtained considering permission as features, using independent classifiers. However, using voted classification approach, an accuracy of 88.27% and 87.53% are obtained respectively for features like opcodes and methods. Also, an improved accuracy of 90.63% was ascertained considering permissions. Initial results are promising which demonstrate that the proposed approach can be used to assist mobile antiviruses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信