一种基于灰色预测模型的云数据中心虚拟机工作负载预测方法

Jhu-Jyun Jheng, Fan-Hsun Tseng, H. Chao, Li-Der Chou
{"title":"一种基于灰色预测模型的云数据中心虚拟机工作负载预测方法","authors":"Jhu-Jyun Jheng, Fan-Hsun Tseng, H. Chao, Li-Der Chou","doi":"10.1109/ICOIN.2014.6799662","DOIUrl":null,"url":null,"abstract":"In recent years, the resource demands in cloud environment have been increased incrementally. In order to effectively allocate the resources, the workload prediction of virtual machines (VMs) is a vital issue that makes the VM allocation more instantaneous and reduces the power consumption. In this paper, we propose a workload prediction method using Grey Forecasting model to allocate VMs, which is the first string in the research field. Firstly, we utilize the time-dependent of workload at the same period in every day, and forecast the VM workload tendency towards increasing or decreasing. Next, we compare the predicted value with previous time period on workload usage, then determine to migrate which VM wherein the physical machine (PM) for the balanced workload and lower power consumption. The simulation results show that our proposed method not only uses the fewer data to predict the workload accurately but also allocates the resource of VMs with power saving.","PeriodicalId":388486,"journal":{"name":"The International Conference on Information Networking 2014 (ICOIN2014)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"A novel VM workload prediction using Grey Forecasting model in cloud data center\",\"authors\":\"Jhu-Jyun Jheng, Fan-Hsun Tseng, H. Chao, Li-Der Chou\",\"doi\":\"10.1109/ICOIN.2014.6799662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the resource demands in cloud environment have been increased incrementally. In order to effectively allocate the resources, the workload prediction of virtual machines (VMs) is a vital issue that makes the VM allocation more instantaneous and reduces the power consumption. In this paper, we propose a workload prediction method using Grey Forecasting model to allocate VMs, which is the first string in the research field. Firstly, we utilize the time-dependent of workload at the same period in every day, and forecast the VM workload tendency towards increasing or decreasing. Next, we compare the predicted value with previous time period on workload usage, then determine to migrate which VM wherein the physical machine (PM) for the balanced workload and lower power consumption. The simulation results show that our proposed method not only uses the fewer data to predict the workload accurately but also allocates the resource of VMs with power saving.\",\"PeriodicalId\":388486,\"journal\":{\"name\":\"The International Conference on Information Networking 2014 (ICOIN2014)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Conference on Information Networking 2014 (ICOIN2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN.2014.6799662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Conference on Information Networking 2014 (ICOIN2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN.2014.6799662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

近年来,云环境对资源的需求呈递增趋势。为了有效地分配资源,虚拟机的工作负载预测是一个至关重要的问题,它可以使虚拟机的分配更加即时,并降低功耗。本文提出了一种基于灰色预测模型的工作负载预测方法来分配虚拟机,这是该领域的第一个研究成果。首先,利用每天同一时间段的工作负载的时间依赖性,预测虚拟机工作负载的增加或减少趋势。接下来,我们将预测值与前一个时间段的工作负载使用情况进行比较,然后决定迁移哪个虚拟机,其中物理机(PM)可以实现平衡的工作负载和更低的功耗。仿真结果表明,该方法不仅可以使用较少的数据准确地预测工作负载,而且可以有效地分配虚拟机资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel VM workload prediction using Grey Forecasting model in cloud data center
In recent years, the resource demands in cloud environment have been increased incrementally. In order to effectively allocate the resources, the workload prediction of virtual machines (VMs) is a vital issue that makes the VM allocation more instantaneous and reduces the power consumption. In this paper, we propose a workload prediction method using Grey Forecasting model to allocate VMs, which is the first string in the research field. Firstly, we utilize the time-dependent of workload at the same period in every day, and forecast the VM workload tendency towards increasing or decreasing. Next, we compare the predicted value with previous time period on workload usage, then determine to migrate which VM wherein the physical machine (PM) for the balanced workload and lower power consumption. The simulation results show that our proposed method not only uses the fewer data to predict the workload accurately but also allocates the resource of VMs with power saving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信