外汇趋势预测的隐马尔可夫模型

Yunli Lee, Leslie Tiong Ching Ow, David Ngo Chek Ling
{"title":"外汇趋势预测的隐马尔可夫模型","authors":"Yunli Lee, Leslie Tiong Ching Ow, David Ngo Chek Ling","doi":"10.1109/ICISA.2014.6847408","DOIUrl":null,"url":null,"abstract":"Foreign Exchange (Forex) market is a complex and challenging task for prediction due to uncertainty movement of exchange rate. However, these movements over timeframe also known as historical Forex data that offered a generic repeated trend patterns. This paper uses the features extracted from trend patterns to model and predict the next day trend. Hidden Markov Models (HMMs) is applied to learn the historical trend patterns, and use to predict the next day movement trends. We use the 2011 Forex historical data of Australian Dollar (AUS) and European Union Dollar (EUD) against the United State Dollar (USD) for modeling, and the 2012 and 2013 Forex historical data for validating the proposed model. The experimental results show outperforms prediction result for both years.","PeriodicalId":117185,"journal":{"name":"2014 International Conference on Information Science & Applications (ICISA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Hidden Markov Models for Forex Trends Prediction\",\"authors\":\"Yunli Lee, Leslie Tiong Ching Ow, David Ngo Chek Ling\",\"doi\":\"10.1109/ICISA.2014.6847408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foreign Exchange (Forex) market is a complex and challenging task for prediction due to uncertainty movement of exchange rate. However, these movements over timeframe also known as historical Forex data that offered a generic repeated trend patterns. This paper uses the features extracted from trend patterns to model and predict the next day trend. Hidden Markov Models (HMMs) is applied to learn the historical trend patterns, and use to predict the next day movement trends. We use the 2011 Forex historical data of Australian Dollar (AUS) and European Union Dollar (EUD) against the United State Dollar (USD) for modeling, and the 2012 and 2013 Forex historical data for validating the proposed model. The experimental results show outperforms prediction result for both years.\",\"PeriodicalId\":117185,\"journal\":{\"name\":\"2014 International Conference on Information Science & Applications (ICISA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Information Science & Applications (ICISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISA.2014.6847408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Information Science & Applications (ICISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2014.6847408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

由于汇率变动的不确定性,外汇市场是一个复杂而具有挑战性的预测任务。然而,这些变动在时间框架内也被称为历史外汇数据,提供了一个通用的重复趋势模式。本文利用从趋势模式中提取的特征对第二天的趋势进行建模和预测。隐马尔可夫模型(hmm)用于学习历史趋势模式,并用于预测第二天的运动趋势。我们使用2011年澳元(AUS)和欧盟美元(EUD)对美元(USD)的外汇历史数据进行建模,并使用2012年和2013年的外汇历史数据来验证所提出的模型。两年的实验结果均优于预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden Markov Models for Forex Trends Prediction
Foreign Exchange (Forex) market is a complex and challenging task for prediction due to uncertainty movement of exchange rate. However, these movements over timeframe also known as historical Forex data that offered a generic repeated trend patterns. This paper uses the features extracted from trend patterns to model and predict the next day trend. Hidden Markov Models (HMMs) is applied to learn the historical trend patterns, and use to predict the next day movement trends. We use the 2011 Forex historical data of Australian Dollar (AUS) and European Union Dollar (EUD) against the United State Dollar (USD) for modeling, and the 2012 and 2013 Forex historical data for validating the proposed model. The experimental results show outperforms prediction result for both years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信