FaSTAP/spl trade/:一种可扩展的GPS抗干扰架构

C. Reed, R. Van Wechel, I. Johnston, B. Baeder, E. Hogan
{"title":"FaSTAP/spl trade/:一种可扩展的GPS抗干扰架构","authors":"C. Reed, R. Van Wechel, I. Johnston, B. Baeder, E. Hogan","doi":"10.1109/PLANS.2004.1309034","DOIUrl":null,"url":null,"abstract":"This paper describes FaSTAP/spl trade/, a scalable architecture for suppression of GPS interference. FaSTAP is a novel, reduced complexity implementation of fully-adaptive space-time adaptive processing (STAP). The architecture is well-suited to low-power operation with most of the processing in a single ASIC or FPGA. A variety of methods for adaptive weight computation can be supported, including sample matrix inversion (SMI). A four-channel ASIC has been created that performs STAP beamforming or nulling with up to seven time taps. The design is scalable to other systems with parameter changes in VHDL (3 and 7 channel FPGAs have been produced). The design supports between one and seven STAP time taps, which is selectable by software, but larger tap lengths can be accommodated with minor changes. Test results are provided that demonstrate the performance against a variety of wideband and narrowband jamming types. Additional simulations are shown that demonstrate the performance improvement in multipath of FaSTAP compared with space-frequency adaptive processing (SFAP).","PeriodicalId":102388,"journal":{"name":"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FaSTAP/spl trade/ : A scalable anti-jam architecture for GPS\",\"authors\":\"C. Reed, R. Van Wechel, I. Johnston, B. Baeder, E. Hogan\",\"doi\":\"10.1109/PLANS.2004.1309034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes FaSTAP/spl trade/, a scalable architecture for suppression of GPS interference. FaSTAP is a novel, reduced complexity implementation of fully-adaptive space-time adaptive processing (STAP). The architecture is well-suited to low-power operation with most of the processing in a single ASIC or FPGA. A variety of methods for adaptive weight computation can be supported, including sample matrix inversion (SMI). A four-channel ASIC has been created that performs STAP beamforming or nulling with up to seven time taps. The design is scalable to other systems with parameter changes in VHDL (3 and 7 channel FPGAs have been produced). The design supports between one and seven STAP time taps, which is selectable by software, but larger tap lengths can be accommodated with minor changes. Test results are provided that demonstrate the performance against a variety of wideband and narrowband jamming types. Additional simulations are shown that demonstrate the performance improvement in multipath of FaSTAP compared with space-frequency adaptive processing (SFAP).\",\"PeriodicalId\":102388,\"journal\":{\"name\":\"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2004.1309034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2004.1309034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种可扩展的抑制GPS干扰的体系结构FaSTAP/spl trade/。FaSTAP是一种新颖的、降低复杂性的全自适应时空自适应处理(STAP)实现。该架构非常适合低功耗操作,大部分处理在单个ASIC或FPGA中进行。支持多种自适应权值计算方法,包括样本矩阵反演(SMI)。一个四通道ASIC已经创建,执行STAP波束形成或零与多达七个时间抽头。该设计可以通过VHDL中的参数变化扩展到其他系统(已经生产了3通道和7通道fpga)。该设计支持1到7个STAP时间抽头,可通过软件选择,但较大的抽头长度可以通过微小的改变来适应。测试结果证明了该系统在各种宽带和窄带干扰下的性能。仿真结果表明,与空频自适应处理(SFAP)相比,FaSTAP在多径上的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FaSTAP/spl trade/ : A scalable anti-jam architecture for GPS
This paper describes FaSTAP/spl trade/, a scalable architecture for suppression of GPS interference. FaSTAP is a novel, reduced complexity implementation of fully-adaptive space-time adaptive processing (STAP). The architecture is well-suited to low-power operation with most of the processing in a single ASIC or FPGA. A variety of methods for adaptive weight computation can be supported, including sample matrix inversion (SMI). A four-channel ASIC has been created that performs STAP beamforming or nulling with up to seven time taps. The design is scalable to other systems with parameter changes in VHDL (3 and 7 channel FPGAs have been produced). The design supports between one and seven STAP time taps, which is selectable by software, but larger tap lengths can be accommodated with minor changes. Test results are provided that demonstrate the performance against a variety of wideband and narrowband jamming types. Additional simulations are shown that demonstrate the performance improvement in multipath of FaSTAP compared with space-frequency adaptive processing (SFAP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信