{"title":"单轴应变下宽度对石墨烯纳米带状态密度的影响","authors":"N. C. Rosid, Z. Johari, M. Ahmadi, R. Ismail","doi":"10.1109/RSM.2013.6706541","DOIUrl":null,"url":null,"abstract":"In this paper, an analytical density of states modeling and simulation study was performed for 3m, 3m+1 and 3m+2 armchair-edge graphene nanoribbon under smaller tensile uniaxial strain. It has been discovered that the irregular variation in DOS as a function of energy when the tensile uniaxial strain is increased from 0% to 3%. In addition, despite to be reduced in terms of energy gap, 3m+1-AGNR is reported to have higher DOS compared to the other families of AGNR while the energy gap opening is confirmed to behave according to its family's behavior.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"301 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effect of width on graphene nanoribbon density of state under uniaxial strain\",\"authors\":\"N. C. Rosid, Z. Johari, M. Ahmadi, R. Ismail\",\"doi\":\"10.1109/RSM.2013.6706541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an analytical density of states modeling and simulation study was performed for 3m, 3m+1 and 3m+2 armchair-edge graphene nanoribbon under smaller tensile uniaxial strain. It has been discovered that the irregular variation in DOS as a function of energy when the tensile uniaxial strain is increased from 0% to 3%. In addition, despite to be reduced in terms of energy gap, 3m+1-AGNR is reported to have higher DOS compared to the other families of AGNR while the energy gap opening is confirmed to behave according to its family's behavior.\",\"PeriodicalId\":346255,\"journal\":{\"name\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"volume\":\"301 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2013.6706541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effect of width on graphene nanoribbon density of state under uniaxial strain
In this paper, an analytical density of states modeling and simulation study was performed for 3m, 3m+1 and 3m+2 armchair-edge graphene nanoribbon under smaller tensile uniaxial strain. It has been discovered that the irregular variation in DOS as a function of energy when the tensile uniaxial strain is increased from 0% to 3%. In addition, despite to be reduced in terms of energy gap, 3m+1-AGNR is reported to have higher DOS compared to the other families of AGNR while the energy gap opening is confirmed to behave according to its family's behavior.