非线性双质量谐振系统的极限环抑制与鲁棒性能改善

S. Komada, K. Iyama, K. Yubai, T. Hori
{"title":"非线性双质量谐振系统的极限环抑制与鲁棒性能改善","authors":"S. Komada, K. Iyama, K. Yubai, T. Hori","doi":"10.1109/IECON.2001.975544","DOIUrl":null,"url":null,"abstract":"Two-mass systems are shown as a model of two masses connected by a spring and often seen in mechanical systems. PID control, resonance ratio control, H/sup /spl infin// control, and etc. have been applied to the two-mass systems. Conventional controllers that use a disturbance observer for two-inertia systems are adopted. A systematic parameter design method for the systems is proposed, where a load variation, Coulomb friction, and fast and precise control are considered. For limit cycle due to friction, a suppression condition of limit cycle is derived by an analysis using a describing function method. For load variation, robust stability for time varying system with structured uncertainty is guaranteed by the quadratic stability. Moreover, nominal performance is improved by maximizing the smallest eigen value of control system under the above restrictions. Effectiveness is confirmed by some simulations and experiments.","PeriodicalId":345608,"journal":{"name":"IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Suppression of limit cycle and improvement of robust performance in two-mass resonant systems with nonlinearity\",\"authors\":\"S. Komada, K. Iyama, K. Yubai, T. Hori\",\"doi\":\"10.1109/IECON.2001.975544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-mass systems are shown as a model of two masses connected by a spring and often seen in mechanical systems. PID control, resonance ratio control, H/sup /spl infin// control, and etc. have been applied to the two-mass systems. Conventional controllers that use a disturbance observer for two-inertia systems are adopted. A systematic parameter design method for the systems is proposed, where a load variation, Coulomb friction, and fast and precise control are considered. For limit cycle due to friction, a suppression condition of limit cycle is derived by an analysis using a describing function method. For load variation, robust stability for time varying system with structured uncertainty is guaranteed by the quadratic stability. Moreover, nominal performance is improved by maximizing the smallest eigen value of control system under the above restrictions. Effectiveness is confirmed by some simulations and experiments.\",\"PeriodicalId\":345608,\"journal\":{\"name\":\"IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2001.975544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2001.975544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

双质量系统用弹簧连接两个质量的模型来表示,这在机械系统中很常见。PID控制、共振比控制、H/sup /spl / infin//控制等已应用于双质量系统。对双惯量系统采用传统的扰动观测器控制。提出了一种考虑载荷变化、库仑摩擦和快速精确控制的系统参数设计方法。对于由摩擦引起的极限环,用描述函数法分析了极限环的抑制条件。对于负荷变化,具有结构不确定性的时变系统的鲁棒稳定性由二次稳定性保证。在上述约束条件下,通过使控制系统的最小特征值最大化来提高系统的标称性能。通过仿真和实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suppression of limit cycle and improvement of robust performance in two-mass resonant systems with nonlinearity
Two-mass systems are shown as a model of two masses connected by a spring and often seen in mechanical systems. PID control, resonance ratio control, H/sup /spl infin// control, and etc. have been applied to the two-mass systems. Conventional controllers that use a disturbance observer for two-inertia systems are adopted. A systematic parameter design method for the systems is proposed, where a load variation, Coulomb friction, and fast and precise control are considered. For limit cycle due to friction, a suppression condition of limit cycle is derived by an analysis using a describing function method. For load variation, robust stability for time varying system with structured uncertainty is guaranteed by the quadratic stability. Moreover, nominal performance is improved by maximizing the smallest eigen value of control system under the above restrictions. Effectiveness is confirmed by some simulations and experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信