经典实验结果的量子力学处理方法替代卡尔曼滤波

Linda Boudiemila, Vadim V. Davydov, V. Malyshkin
{"title":"经典实验结果的量子力学处理方法替代卡尔曼滤波","authors":"Linda Boudiemila, Vadim V. Davydov, V. Malyshkin","doi":"10.1109/EExPolytech53083.2021.9614921","DOIUrl":null,"url":null,"abstract":"A problem of timeserie data analysis is considered. Whereas standard approaches such as Kalman filter are of linear quadratic estimation (LQE) type, the technique developed in this paper views system dynamics as a sequence of unitary transformations. The approach consists of two steps: 1. Convert the sequence of vector $\\mathrm{x}^{(l)}$ observations $l=1\\ldots M$ to a sequence of localized at $\\mathrm{x}^{(l)}$ states $\\vert \\psi_{\\mathrm{x}(l)}\\rangle$. 2. Find unitary operator $\\mathcal{U}$ ‘optimally converting $\\vert \\psi_{\\mathrm{x}(l+1)}\\}=\\vert \\mathcal{U}\\vert \\psi_{\\mathrm{x}^{(l)}}\\rangle;$: the problem is reduced to finding the maximum of a quadratic form on $U$ matrix elements subject to constraints that are quadratic forms on $U$ matrix elements as well. The approach is outlier-stable and can be applied to the processes with spikes and non-Gaussian noise. The approach is gauge-invariant, e.g. the result is the same when arbitrary non-degenerate linear transform is applied to input vector $\\mathrm{x}^{(l)}$ components.","PeriodicalId":141827,"journal":{"name":"2021 International Conference on Electrical Engineering and Photonics (EExPolytech)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum-Mechanical Methods for Processing the Results of Classical Experiments as an Alternative to Kalman Filter\",\"authors\":\"Linda Boudiemila, Vadim V. Davydov, V. Malyshkin\",\"doi\":\"10.1109/EExPolytech53083.2021.9614921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A problem of timeserie data analysis is considered. Whereas standard approaches such as Kalman filter are of linear quadratic estimation (LQE) type, the technique developed in this paper views system dynamics as a sequence of unitary transformations. The approach consists of two steps: 1. Convert the sequence of vector $\\\\mathrm{x}^{(l)}$ observations $l=1\\\\ldots M$ to a sequence of localized at $\\\\mathrm{x}^{(l)}$ states $\\\\vert \\\\psi_{\\\\mathrm{x}(l)}\\\\rangle$. 2. Find unitary operator $\\\\mathcal{U}$ ‘optimally converting $\\\\vert \\\\psi_{\\\\mathrm{x}(l+1)}\\\\}=\\\\vert \\\\mathcal{U}\\\\vert \\\\psi_{\\\\mathrm{x}^{(l)}}\\\\rangle;$: the problem is reduced to finding the maximum of a quadratic form on $U$ matrix elements subject to constraints that are quadratic forms on $U$ matrix elements as well. The approach is outlier-stable and can be applied to the processes with spikes and non-Gaussian noise. The approach is gauge-invariant, e.g. the result is the same when arbitrary non-degenerate linear transform is applied to input vector $\\\\mathrm{x}^{(l)}$ components.\",\"PeriodicalId\":141827,\"journal\":{\"name\":\"2021 International Conference on Electrical Engineering and Photonics (EExPolytech)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Electrical Engineering and Photonics (EExPolytech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EExPolytech53083.2021.9614921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Engineering and Photonics (EExPolytech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EExPolytech53083.2021.9614921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了时序数据分析问题。卡尔曼滤波等标准方法是线性二次估计(LQE)类型,而本文开发的技术将系统动力学视为一个幺正变换序列。该方法包括两个步骤:1。将向量$\mathrm{x}^{(l)}$ observations $l=1\ldots M$的序列转换为定位于$\mathrm{x}^{(l)}$ states $\vert \psi_{\mathrm{x}(l)}\rangle$的序列。2. 寻找一元算子$\mathcal{U}$ ',最优地转换$\vert \mathcal{\mathrm{x}(l+1)}\}=\vert \mathcal{U}\vert \psi_{\mathrm{x}^{(l)}}\rangle;$:问题被简化为在$U$矩阵元素上寻找二次形式的最大值,该约束也是$U$矩阵元素上的二次形式。该方法是异常稳定的,可以应用于具有尖峰和非高斯噪声的过程。该方法是规范不变的,例如,当对输入向量$\ mathm {x}^{(l)}$分量应用任意非退化线性变换时,结果是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum-Mechanical Methods for Processing the Results of Classical Experiments as an Alternative to Kalman Filter
A problem of timeserie data analysis is considered. Whereas standard approaches such as Kalman filter are of linear quadratic estimation (LQE) type, the technique developed in this paper views system dynamics as a sequence of unitary transformations. The approach consists of two steps: 1. Convert the sequence of vector $\mathrm{x}^{(l)}$ observations $l=1\ldots M$ to a sequence of localized at $\mathrm{x}^{(l)}$ states $\vert \psi_{\mathrm{x}(l)}\rangle$. 2. Find unitary operator $\mathcal{U}$ ‘optimally converting $\vert \psi_{\mathrm{x}(l+1)}\}=\vert \mathcal{U}\vert \psi_{\mathrm{x}^{(l)}}\rangle;$: the problem is reduced to finding the maximum of a quadratic form on $U$ matrix elements subject to constraints that are quadratic forms on $U$ matrix elements as well. The approach is outlier-stable and can be applied to the processes with spikes and non-Gaussian noise. The approach is gauge-invariant, e.g. the result is the same when arbitrary non-degenerate linear transform is applied to input vector $\mathrm{x}^{(l)}$ components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信