动态增量k均值聚类

B. Aaron, D. Tamir, N. Rishe, A. Kandel
{"title":"动态增量k均值聚类","authors":"B. Aaron, D. Tamir, N. Rishe, A. Kandel","doi":"10.1109/CSCI.2014.60","DOIUrl":null,"url":null,"abstract":"K-means clustering is one of the most commonly used methods for classification and data-mining. When the amount of data to be clustered is \"huge,\" and/or when data becomes available in increments, one has to devise incremental K-means procedures. Current research on incremental clustering does not address several of the specific problems of incremental K-means including the seeding problem, sensitivity of the algorithm to the order of the data, and the number of clusters. In this paper we present static and dynamic single-pass incremental K-means procedures that overcome these limitations.","PeriodicalId":439385,"journal":{"name":"2014 International Conference on Computational Science and Computational Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Dynamic Incremental K-means Clustering\",\"authors\":\"B. Aaron, D. Tamir, N. Rishe, A. Kandel\",\"doi\":\"10.1109/CSCI.2014.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"K-means clustering is one of the most commonly used methods for classification and data-mining. When the amount of data to be clustered is \\\"huge,\\\" and/or when data becomes available in increments, one has to devise incremental K-means procedures. Current research on incremental clustering does not address several of the specific problems of incremental K-means including the seeding problem, sensitivity of the algorithm to the order of the data, and the number of clusters. In this paper we present static and dynamic single-pass incremental K-means procedures that overcome these limitations.\",\"PeriodicalId\":439385,\"journal\":{\"name\":\"2014 International Conference on Computational Science and Computational Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Computational Science and Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI.2014.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computational Science and Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI.2014.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

k均值聚类是分类和数据挖掘中最常用的方法之一。当要聚集的数据量“巨大”,或者当数据以增量的方式可用时,必须设计增量K-means过程。目前关于增量聚类的研究并没有解决增量K-means的几个具体问题,包括播种问题、算法对数据顺序的敏感性以及聚类的数量。在本文中,我们提出了克服这些限制的静态和动态单遍增量K-means过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Incremental K-means Clustering
K-means clustering is one of the most commonly used methods for classification and data-mining. When the amount of data to be clustered is "huge," and/or when data becomes available in increments, one has to devise incremental K-means procedures. Current research on incremental clustering does not address several of the specific problems of incremental K-means including the seeding problem, sensitivity of the algorithm to the order of the data, and the number of clusters. In this paper we present static and dynamic single-pass incremental K-means procedures that overcome these limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信