基于平衡输出分区的神经网络运行健康并发监测

Elbruz Ozen, A. Orailoglu
{"title":"基于平衡输出分区的神经网络运行健康并发监测","authors":"Elbruz Ozen, A. Orailoglu","doi":"10.1109/ASP-DAC47756.2020.9045662","DOIUrl":null,"url":null,"abstract":"The abundant usage of deep neural networks in safety-critical domains such as autonomous driving raises concerns regarding the impact of hardware-level faults on deep neural network computations. As a failure can prove to be disastrous, low-cost safety mechanisms are needed to check the integrity of the deep neural network computations. We embed safety checksums into deep neural networks by introducing a custom regularization term in the network training. We partition the outputs of each network layer into two groups and guide the network to balance the summation of these groups through an additional penalty term in the cost function. The proposed approach delivers twin benefits. While the embedded checksums deliver low-cost detection of computation errors upon violations of the trained equilibrium during network inference, the regularization term enables the network to generalize better during training by preventing overfitting, thus leading to significantly higher network accuracy.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Concurrent Monitoring of Operational Health in Neural Networks Through Balanced Output Partitions\",\"authors\":\"Elbruz Ozen, A. Orailoglu\",\"doi\":\"10.1109/ASP-DAC47756.2020.9045662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The abundant usage of deep neural networks in safety-critical domains such as autonomous driving raises concerns regarding the impact of hardware-level faults on deep neural network computations. As a failure can prove to be disastrous, low-cost safety mechanisms are needed to check the integrity of the deep neural network computations. We embed safety checksums into deep neural networks by introducing a custom regularization term in the network training. We partition the outputs of each network layer into two groups and guide the network to balance the summation of these groups through an additional penalty term in the cost function. The proposed approach delivers twin benefits. While the embedded checksums deliver low-cost detection of computation errors upon violations of the trained equilibrium during network inference, the regularization term enables the network to generalize better during training by preventing overfitting, thus leading to significantly higher network accuracy.\",\"PeriodicalId\":125112,\"journal\":{\"name\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC47756.2020.9045662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

深度神经网络在自动驾驶等安全关键领域的大量应用引发了人们对硬件级故障对深度神经网络计算影响的担忧。由于故障可能是灾难性的,因此需要低成本的安全机制来检查深度神经网络计算的完整性。我们通过在网络训练中引入自定义正则化项将安全校验和嵌入到深度神经网络中。我们将每个网络层的输出分成两组,并通过成本函数中的附加惩罚项引导网络平衡这些组的总和。提议的方法带来了双重好处。虽然嵌入式校验和在网络推理过程中对违反训练均衡的计算错误进行低成本检测,但正则化项通过防止过拟合使网络在训练过程中更好地泛化,从而显著提高网络精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concurrent Monitoring of Operational Health in Neural Networks Through Balanced Output Partitions
The abundant usage of deep neural networks in safety-critical domains such as autonomous driving raises concerns regarding the impact of hardware-level faults on deep neural network computations. As a failure can prove to be disastrous, low-cost safety mechanisms are needed to check the integrity of the deep neural network computations. We embed safety checksums into deep neural networks by introducing a custom regularization term in the network training. We partition the outputs of each network layer into two groups and guide the network to balance the summation of these groups through an additional penalty term in the cost function. The proposed approach delivers twin benefits. While the embedded checksums deliver low-cost detection of computation errors upon violations of the trained equilibrium during network inference, the regularization term enables the network to generalize better during training by preventing overfitting, thus leading to significantly higher network accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信