使用聚类Bert和Word2vec模型的Tweet推荐

Surbhi Kakar, Deepali Dhaka, Monica Mehrotra
{"title":"使用聚类Bert和Word2vec模型的Tweet推荐","authors":"Surbhi Kakar, Deepali Dhaka, Monica Mehrotra","doi":"10.1109/SmartNets58706.2023.10215867","DOIUrl":null,"url":null,"abstract":"This work presents a tweet recommendation algorithm based on Clustered Bert and Clustered word2vec models. The paper proposes a hybrid recommender system using content and collaborative filtering techniques. In the first phase, the content of the tweets is captured and processed via clustered Bert and word2vec models. These models work on clustering the tweet embeddings generated from Bert and Word2vec models giving out tweet clusters as an output. In the second phase, Collaborative filtering algorithms is then used to recommend tweets to a user based on the historic tweet cluster of interest of the user. The work uses Agglomerative and Kmeans clustering algorithms to cluster similar tweets together. Results show that the recommendations generated from Clustered Bert model have a better performance than Clustered Word2vec model.","PeriodicalId":301834,"journal":{"name":"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tweet recommendation using Clustered Bert and Word2vec Models\",\"authors\":\"Surbhi Kakar, Deepali Dhaka, Monica Mehrotra\",\"doi\":\"10.1109/SmartNets58706.2023.10215867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a tweet recommendation algorithm based on Clustered Bert and Clustered word2vec models. The paper proposes a hybrid recommender system using content and collaborative filtering techniques. In the first phase, the content of the tweets is captured and processed via clustered Bert and word2vec models. These models work on clustering the tweet embeddings generated from Bert and Word2vec models giving out tweet clusters as an output. In the second phase, Collaborative filtering algorithms is then used to recommend tweets to a user based on the historic tweet cluster of interest of the user. The work uses Agglomerative and Kmeans clustering algorithms to cluster similar tweets together. Results show that the recommendations generated from Clustered Bert model have a better performance than Clustered Word2vec model.\",\"PeriodicalId\":301834,\"journal\":{\"name\":\"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartNets58706.2023.10215867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartNets58706.2023.10215867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于聚类Bert和聚类word2vec模型的推文推荐算法。本文提出了一种采用内容过滤和协同过滤技术的混合推荐系统。在第一阶段,通过集群Bert和word2vec模型捕获和处理tweet的内容。这些模型对Bert和Word2vec模型生成的推文嵌入进行聚类,并给出推文聚类作为输出。在第二阶段,使用协同过滤算法根据用户感兴趣的历史推文集群向用户推荐推文。这项工作使用Agglomerative和Kmeans聚类算法将相似的推文聚在一起。结果表明,聚类Bert模型生成的推荐效果优于聚类Word2vec模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tweet recommendation using Clustered Bert and Word2vec Models
This work presents a tweet recommendation algorithm based on Clustered Bert and Clustered word2vec models. The paper proposes a hybrid recommender system using content and collaborative filtering techniques. In the first phase, the content of the tweets is captured and processed via clustered Bert and word2vec models. These models work on clustering the tweet embeddings generated from Bert and Word2vec models giving out tweet clusters as an output. In the second phase, Collaborative filtering algorithms is then used to recommend tweets to a user based on the historic tweet cluster of interest of the user. The work uses Agglomerative and Kmeans clustering algorithms to cluster similar tweets together. Results show that the recommendations generated from Clustered Bert model have a better performance than Clustered Word2vec model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信