自适应狼搜索算法

Qun Song, S. Fong, R. Tang
{"title":"自适应狼搜索算法","authors":"Qun Song, S. Fong, R. Tang","doi":"10.1109/IIAI-AAI.2016.102","DOIUrl":null,"url":null,"abstract":"Swarm optimization algorithms are some of the most efficient ways to solve complexity optimization problems, especially the NP-hard problems. Wolf Search Algorithm (WSA) is a new addition to the family of swarm optimization algorithms. However there are some inherent shortcomings of these algorithms, which is the performance depends heavily on the manually chosen parameters values. One possible approach to solve this limitation is using self-adaptive methods in parameter selection. In this paper we propose some self-adaptive method for WSA to facilitate automatic selection of parameter values. Differential evolution crossover function to iteratively fine-tune the parameters values. Both random and core-guided methods are attempted to choose the evolution agents. In this paper the self-adaptive methods are implemented, certain improvement is shown from the experimental results.","PeriodicalId":272739,"journal":{"name":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Self-Adaptive Wolf Search Algorithm\",\"authors\":\"Qun Song, S. Fong, R. Tang\",\"doi\":\"10.1109/IIAI-AAI.2016.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Swarm optimization algorithms are some of the most efficient ways to solve complexity optimization problems, especially the NP-hard problems. Wolf Search Algorithm (WSA) is a new addition to the family of swarm optimization algorithms. However there are some inherent shortcomings of these algorithms, which is the performance depends heavily on the manually chosen parameters values. One possible approach to solve this limitation is using self-adaptive methods in parameter selection. In this paper we propose some self-adaptive method for WSA to facilitate automatic selection of parameter values. Differential evolution crossover function to iteratively fine-tune the parameters values. Both random and core-guided methods are attempted to choose the evolution agents. In this paper the self-adaptive methods are implemented, certain improvement is shown from the experimental results.\",\"PeriodicalId\":272739,\"journal\":{\"name\":\"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAI-AAI.2016.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2016.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

群优化算法是解决复杂性优化问题,特别是np困难问题的最有效方法之一。狼搜索算法(WSA)是群优化算法家族的新成员。然而,这些算法存在一些固有的缺点,即性能严重依赖于人工选择的参数值。解决这一限制的一种可能方法是在参数选择中使用自适应方法。本文提出了一种自适应WSA方法来实现参数值的自动选择。微分演化交叉函数迭代微调参数值。采用随机和核心引导两种方法选择进化主体。本文实现了自适应方法,实验结果表明该方法有一定的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Adaptive Wolf Search Algorithm
Swarm optimization algorithms are some of the most efficient ways to solve complexity optimization problems, especially the NP-hard problems. Wolf Search Algorithm (WSA) is a new addition to the family of swarm optimization algorithms. However there are some inherent shortcomings of these algorithms, which is the performance depends heavily on the manually chosen parameters values. One possible approach to solve this limitation is using self-adaptive methods in parameter selection. In this paper we propose some self-adaptive method for WSA to facilitate automatic selection of parameter values. Differential evolution crossover function to iteratively fine-tune the parameters values. Both random and core-guided methods are attempted to choose the evolution agents. In this paper the self-adaptive methods are implemented, certain improvement is shown from the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信