Gaussian Naive Bayes Classifier算法的实施,以微型控制器为基础预测潜在海啸

Dede Irawan Saputra, Dadang Lukman Hakim
{"title":"Gaussian Naive Bayes Classifier算法的实施,以微型控制器为基础预测潜在海啸","authors":"Dede Irawan Saputra, Dadang Lukman Hakim","doi":"10.55893/epsilon.v20i2.94","DOIUrl":null,"url":null,"abstract":"Klasifikasi yang dilakukan algoritma Gaussian Naive Bayes Classifier dapat menggunakan data kontinyu seperti parameter-parameter yang menjadi pertimbangan terjadinya tsunami. Data yang dikumpulkan untuk proses klasifikasi merupakan beberapa data gempa bumi yang terjadi di Indonesia dalam kurun waktu 20 tahun terakhir. Data dari terjadinya gempa bumi yang diambil antara lain adalah waktu terjadinya, tempat terjadinya gempa, besar kekuatan gempa, kedalaman terjadinya gempa, dan juga jarak pusat gempa terhadap kota terdekat terjadinya gempa. Adapaun parameter yang diperlukan dalam mengimplementasikan proses prediksi adalah nilai rata-rata dari magnitudo, kedalaman pusat gempa, dan jarak episentrum. Berikutnya diperlukan juga nilai dari masing-masing standar deviasi dari magnitudo, kedalaman pusat gempa, dan jarak episentrum. Pada mikrokontroler dapat diimplementasikan persamaan fungsi Probabilistic Density Function untuk menghitung potensi tsunami. algoritma Gaussian Naive Bayes Classifier berbasis mikrokontroler dengan klasifikasi “Berpotensi Tsunami” dan “Tidak Berpotensi Tsunami” memiliki akurasi sebesar 96%.","PeriodicalId":320715,"journal":{"name":"EPSILON: Journal of Electrical Engineering and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementasi Algoritma Gaussian Naive Bayes Classifier Untuk Prediksi Potensi Tsunami Berbasis Mikrokontroler\",\"authors\":\"Dede Irawan Saputra, Dadang Lukman Hakim\",\"doi\":\"10.55893/epsilon.v20i2.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Klasifikasi yang dilakukan algoritma Gaussian Naive Bayes Classifier dapat menggunakan data kontinyu seperti parameter-parameter yang menjadi pertimbangan terjadinya tsunami. Data yang dikumpulkan untuk proses klasifikasi merupakan beberapa data gempa bumi yang terjadi di Indonesia dalam kurun waktu 20 tahun terakhir. Data dari terjadinya gempa bumi yang diambil antara lain adalah waktu terjadinya, tempat terjadinya gempa, besar kekuatan gempa, kedalaman terjadinya gempa, dan juga jarak pusat gempa terhadap kota terdekat terjadinya gempa. Adapaun parameter yang diperlukan dalam mengimplementasikan proses prediksi adalah nilai rata-rata dari magnitudo, kedalaman pusat gempa, dan jarak episentrum. Berikutnya diperlukan juga nilai dari masing-masing standar deviasi dari magnitudo, kedalaman pusat gempa, dan jarak episentrum. Pada mikrokontroler dapat diimplementasikan persamaan fungsi Probabilistic Density Function untuk menghitung potensi tsunami. algoritma Gaussian Naive Bayes Classifier berbasis mikrokontroler dengan klasifikasi “Berpotensi Tsunami” dan “Tidak Berpotensi Tsunami” memiliki akurasi sebesar 96%.\",\"PeriodicalId\":320715,\"journal\":{\"name\":\"EPSILON: Journal of Electrical Engineering and Information Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPSILON: Journal of Electrical Engineering and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55893/epsilon.v20i2.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPSILON: Journal of Electrical Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55893/epsilon.v20i2.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Gaussian Naive Bayes Classifier算法的分类方法可以使用连续数据,如海啸可能发生的参数。分类收集的数据是过去20年发生在印尼的一些地震数据。地震发生的数据包括地震发生的时间、地点、震级、地震发生的深度以及震中与邻近城市的距离。执行预测过程所需的参数是地震震中深度和震中距离的平均值。其次还需要各标准地震震中深度和震中距离的偏差值。在微控制器中,可以执行概率丹尼功能方程来计算海啸的潜力。Gaussian Naive Classifier算法对“潜在海啸”和“不潜在海啸”进行了分类,准确率为96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementasi Algoritma Gaussian Naive Bayes Classifier Untuk Prediksi Potensi Tsunami Berbasis Mikrokontroler
Klasifikasi yang dilakukan algoritma Gaussian Naive Bayes Classifier dapat menggunakan data kontinyu seperti parameter-parameter yang menjadi pertimbangan terjadinya tsunami. Data yang dikumpulkan untuk proses klasifikasi merupakan beberapa data gempa bumi yang terjadi di Indonesia dalam kurun waktu 20 tahun terakhir. Data dari terjadinya gempa bumi yang diambil antara lain adalah waktu terjadinya, tempat terjadinya gempa, besar kekuatan gempa, kedalaman terjadinya gempa, dan juga jarak pusat gempa terhadap kota terdekat terjadinya gempa. Adapaun parameter yang diperlukan dalam mengimplementasikan proses prediksi adalah nilai rata-rata dari magnitudo, kedalaman pusat gempa, dan jarak episentrum. Berikutnya diperlukan juga nilai dari masing-masing standar deviasi dari magnitudo, kedalaman pusat gempa, dan jarak episentrum. Pada mikrokontroler dapat diimplementasikan persamaan fungsi Probabilistic Density Function untuk menghitung potensi tsunami. algoritma Gaussian Naive Bayes Classifier berbasis mikrokontroler dengan klasifikasi “Berpotensi Tsunami” dan “Tidak Berpotensi Tsunami” memiliki akurasi sebesar 96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信