{"title":"基于机器学习的高、低分辨率图像融合方法改进目标分类","authors":"R. Ilin","doi":"10.1109/NAECON.2014.7045802","DOIUrl":null,"url":null,"abstract":"This work utilizes high resolution images in order to improve the classification accuracy on low resolution images. The approach is based on the machine learning paradigm called LUPI - “Learning Using Privileged Information”. In this contribution, the LUPI paradigm is demonstrated on images from the Caltech 101 dataset.","PeriodicalId":318539,"journal":{"name":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine learning approach to fusion of high and low resolution imagery for improved target classification\",\"authors\":\"R. Ilin\",\"doi\":\"10.1109/NAECON.2014.7045802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work utilizes high resolution images in order to improve the classification accuracy on low resolution images. The approach is based on the machine learning paradigm called LUPI - “Learning Using Privileged Information”. In this contribution, the LUPI paradigm is demonstrated on images from the Caltech 101 dataset.\",\"PeriodicalId\":318539,\"journal\":{\"name\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2014.7045802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2014.7045802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning approach to fusion of high and low resolution imagery for improved target classification
This work utilizes high resolution images in order to improve the classification accuracy on low resolution images. The approach is based on the machine learning paradigm called LUPI - “Learning Using Privileged Information”. In this contribution, the LUPI paradigm is demonstrated on images from the Caltech 101 dataset.