基于机器学习的高、低分辨率图像融合方法改进目标分类

R. Ilin
{"title":"基于机器学习的高、低分辨率图像融合方法改进目标分类","authors":"R. Ilin","doi":"10.1109/NAECON.2014.7045802","DOIUrl":null,"url":null,"abstract":"This work utilizes high resolution images in order to improve the classification accuracy on low resolution images. The approach is based on the machine learning paradigm called LUPI - “Learning Using Privileged Information”. In this contribution, the LUPI paradigm is demonstrated on images from the Caltech 101 dataset.","PeriodicalId":318539,"journal":{"name":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine learning approach to fusion of high and low resolution imagery for improved target classification\",\"authors\":\"R. Ilin\",\"doi\":\"10.1109/NAECON.2014.7045802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work utilizes high resolution images in order to improve the classification accuracy on low resolution images. The approach is based on the machine learning paradigm called LUPI - “Learning Using Privileged Information”. In this contribution, the LUPI paradigm is demonstrated on images from the Caltech 101 dataset.\",\"PeriodicalId\":318539,\"journal\":{\"name\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2014.7045802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2014.7045802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究利用高分辨率图像来提高低分辨率图像的分类精度。该方法基于被称为LUPI的机器学习范式——“使用特权信息学习”。在这篇文章中,LUPI范式在来自Caltech 101数据集的图像上进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning approach to fusion of high and low resolution imagery for improved target classification
This work utilizes high resolution images in order to improve the classification accuracy on low resolution images. The approach is based on the machine learning paradigm called LUPI - “Learning Using Privileged Information”. In this contribution, the LUPI paradigm is demonstrated on images from the Caltech 101 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信