F. Sarubbi, L. Nanver, T. Scholtes, S. Nihtianov, F. Scholze
{"title":"纯掺硼光电二极管:EUV光刻中辐射检测的解决方案","authors":"F. Sarubbi, L. Nanver, T. Scholtes, S. Nihtianov, F. Scholze","doi":"10.1109/ESSDERC.2008.4681752","DOIUrl":null,"url":null,"abstract":"A pure boron chemical vapor deposition (CVD) technology, which forms delta-doped boron surface layers during diborane B2H6 exposure at 700degC, has been successfully used to fabricate silicon-based p+n photodiodes for radiation detection in the extreme-ultra-violet (EUV) spectral range. Outstanding electrical and optical performance has been achieved in terms of extremely low dark current (< 50 pA at reverse bias of 10 V), near theoretical responsivity (0.266 A/W at 13.5 nm wavelength), and excellent stability to high radiation doses (< 1% responsivity degradation after 0.2 MJ/cm2 exposure). Therefore, the diodes are suitable candidates for photon detection functions in the next-generation EUV lithography systems.","PeriodicalId":121088,"journal":{"name":"ESSDERC 2008 - 38th European Solid-State Device Research Conference","volume":"61 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Pure boron-doped photodiodes: A solution for radiation detection in EUV lithography\",\"authors\":\"F. Sarubbi, L. Nanver, T. Scholtes, S. Nihtianov, F. Scholze\",\"doi\":\"10.1109/ESSDERC.2008.4681752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A pure boron chemical vapor deposition (CVD) technology, which forms delta-doped boron surface layers during diborane B2H6 exposure at 700degC, has been successfully used to fabricate silicon-based p+n photodiodes for radiation detection in the extreme-ultra-violet (EUV) spectral range. Outstanding electrical and optical performance has been achieved in terms of extremely low dark current (< 50 pA at reverse bias of 10 V), near theoretical responsivity (0.266 A/W at 13.5 nm wavelength), and excellent stability to high radiation doses (< 1% responsivity degradation after 0.2 MJ/cm2 exposure). Therefore, the diodes are suitable candidates for photon detection functions in the next-generation EUV lithography systems.\",\"PeriodicalId\":121088,\"journal\":{\"name\":\"ESSDERC 2008 - 38th European Solid-State Device Research Conference\",\"volume\":\"61 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSDERC 2008 - 38th European Solid-State Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2008.4681752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSDERC 2008 - 38th European Solid-State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2008.4681752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pure boron-doped photodiodes: A solution for radiation detection in EUV lithography
A pure boron chemical vapor deposition (CVD) technology, which forms delta-doped boron surface layers during diborane B2H6 exposure at 700degC, has been successfully used to fabricate silicon-based p+n photodiodes for radiation detection in the extreme-ultra-violet (EUV) spectral range. Outstanding electrical and optical performance has been achieved in terms of extremely low dark current (< 50 pA at reverse bias of 10 V), near theoretical responsivity (0.266 A/W at 13.5 nm wavelength), and excellent stability to high radiation doses (< 1% responsivity degradation after 0.2 MJ/cm2 exposure). Therefore, the diodes are suitable candidates for photon detection functions in the next-generation EUV lithography systems.