基于图神经网络的片上网络快速PPA预测框架

Fuping Li, Ying Wang, Cheng Liu, Huawei Li, Xiaowei Li
{"title":"基于图神经网络的片上网络快速PPA预测框架","authors":"Fuping Li, Ying Wang, Cheng Liu, Huawei Li, Xiaowei Li","doi":"10.23919/DATE54114.2022.9774525","DOIUrl":null,"url":null,"abstract":"Network-on-Chips (NoCs) have been viewed as a promising alternative to traditional on-chip communication architecture for the increasing number of IPs in modern chips. To support the vast design space exploration of application-specific NoC characteristics with arbitrary topologies, in this paper, we propose a fast estimation framework to predict power, performance, and area (PPA) of NoCs based on graph neural networks (GNNs). We present a general way of modeling the application and the NoC with user-defined parameters as an attributed graph, which can be learned by the GNN model. Experimental results show that on the unseen realistic applications, the proposed method achieves the accuracy of 97.36% on power estimation, 97.83% on area estimation, and improves the accuracy of the network-level and system-level performance predictor over the topology-constrained baseline method by 6.52% and 4.73% respectively.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"NoCeption: A Fast PPA Prediction Framework for Network-on-Chips Using Graph Neural Network\",\"authors\":\"Fuping Li, Ying Wang, Cheng Liu, Huawei Li, Xiaowei Li\",\"doi\":\"10.23919/DATE54114.2022.9774525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network-on-Chips (NoCs) have been viewed as a promising alternative to traditional on-chip communication architecture for the increasing number of IPs in modern chips. To support the vast design space exploration of application-specific NoC characteristics with arbitrary topologies, in this paper, we propose a fast estimation framework to predict power, performance, and area (PPA) of NoCs based on graph neural networks (GNNs). We present a general way of modeling the application and the NoC with user-defined parameters as an attributed graph, which can be learned by the GNN model. Experimental results show that on the unseen realistic applications, the proposed method achieves the accuracy of 97.36% on power estimation, 97.83% on area estimation, and improves the accuracy of the network-level and system-level performance predictor over the topology-constrained baseline method by 6.52% and 4.73% respectively.\",\"PeriodicalId\":232583,\"journal\":{\"name\":\"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DATE54114.2022.9774525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE54114.2022.9774525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着现代芯片中ip数量的不断增加,片上网络(noc)已被视为传统片上通信架构的一种有前途的替代方案。为了支持具有任意拓扑的特定应用NoC特性的巨大设计空间探索,本文提出了一种基于图神经网络(gnn)的快速估计框架来预测NoC的功率,性能和面积(PPA)。我们提出了一种通用的方法,将应用程序和带有用户自定义参数的NoC建模为属性图,该属性图可以被GNN模型学习。实验结果表明,在未见过的实际应用中,该方法在功率估计和面积估计上的准确率分别达到97.36%和97.83%,在网络级和系统级性能预测器的准确率分别比拓扑约束基线方法提高6.52%和4.73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NoCeption: A Fast PPA Prediction Framework for Network-on-Chips Using Graph Neural Network
Network-on-Chips (NoCs) have been viewed as a promising alternative to traditional on-chip communication architecture for the increasing number of IPs in modern chips. To support the vast design space exploration of application-specific NoC characteristics with arbitrary topologies, in this paper, we propose a fast estimation framework to predict power, performance, and area (PPA) of NoCs based on graph neural networks (GNNs). We present a general way of modeling the application and the NoC with user-defined parameters as an attributed graph, which can be learned by the GNN model. Experimental results show that on the unseen realistic applications, the proposed method achieves the accuracy of 97.36% on power estimation, 97.83% on area estimation, and improves the accuracy of the network-level and system-level performance predictor over the topology-constrained baseline method by 6.52% and 4.73% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信