Fuping Li, Ying Wang, Cheng Liu, Huawei Li, Xiaowei Li
{"title":"基于图神经网络的片上网络快速PPA预测框架","authors":"Fuping Li, Ying Wang, Cheng Liu, Huawei Li, Xiaowei Li","doi":"10.23919/DATE54114.2022.9774525","DOIUrl":null,"url":null,"abstract":"Network-on-Chips (NoCs) have been viewed as a promising alternative to traditional on-chip communication architecture for the increasing number of IPs in modern chips. To support the vast design space exploration of application-specific NoC characteristics with arbitrary topologies, in this paper, we propose a fast estimation framework to predict power, performance, and area (PPA) of NoCs based on graph neural networks (GNNs). We present a general way of modeling the application and the NoC with user-defined parameters as an attributed graph, which can be learned by the GNN model. Experimental results show that on the unseen realistic applications, the proposed method achieves the accuracy of 97.36% on power estimation, 97.83% on area estimation, and improves the accuracy of the network-level and system-level performance predictor over the topology-constrained baseline method by 6.52% and 4.73% respectively.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"NoCeption: A Fast PPA Prediction Framework for Network-on-Chips Using Graph Neural Network\",\"authors\":\"Fuping Li, Ying Wang, Cheng Liu, Huawei Li, Xiaowei Li\",\"doi\":\"10.23919/DATE54114.2022.9774525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network-on-Chips (NoCs) have been viewed as a promising alternative to traditional on-chip communication architecture for the increasing number of IPs in modern chips. To support the vast design space exploration of application-specific NoC characteristics with arbitrary topologies, in this paper, we propose a fast estimation framework to predict power, performance, and area (PPA) of NoCs based on graph neural networks (GNNs). We present a general way of modeling the application and the NoC with user-defined parameters as an attributed graph, which can be learned by the GNN model. Experimental results show that on the unseen realistic applications, the proposed method achieves the accuracy of 97.36% on power estimation, 97.83% on area estimation, and improves the accuracy of the network-level and system-level performance predictor over the topology-constrained baseline method by 6.52% and 4.73% respectively.\",\"PeriodicalId\":232583,\"journal\":{\"name\":\"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DATE54114.2022.9774525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE54114.2022.9774525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NoCeption: A Fast PPA Prediction Framework for Network-on-Chips Using Graph Neural Network
Network-on-Chips (NoCs) have been viewed as a promising alternative to traditional on-chip communication architecture for the increasing number of IPs in modern chips. To support the vast design space exploration of application-specific NoC characteristics with arbitrary topologies, in this paper, we propose a fast estimation framework to predict power, performance, and area (PPA) of NoCs based on graph neural networks (GNNs). We present a general way of modeling the application and the NoC with user-defined parameters as an attributed graph, which can be learned by the GNN model. Experimental results show that on the unseen realistic applications, the proposed method achieves the accuracy of 97.36% on power estimation, 97.83% on area estimation, and improves the accuracy of the network-level and system-level performance predictor over the topology-constrained baseline method by 6.52% and 4.73% respectively.