学习MIMO干扰信道的物理层方案

T. Erpek, Tim O'Shea, T. Clancy
{"title":"学习MIMO干扰信道的物理层方案","authors":"T. Erpek, Tim O'Shea, T. Clancy","doi":"10.1109/ICC.2018.8422339","DOIUrl":null,"url":null,"abstract":"This paper presents a novel physical layer scheme for multiple-input multiple-output (MIMO) communication systems based on unsupervised deep learning (DL) using an autoencoder in an interference channel (IC) environment. Moreover, it extends the single-input single-output (SISO) channel autoencoder to consider fading channel conditions. In both schemes, two physical layer communication system encoders and decoders are jointly optimized in the presence of interference to minimize their symbol error rate (SER). We analyze resulting SER performance for varying signal-to-interference-plus-noise-ratio (SINR) levels. Realistic channel effects; i.e. Rayleigh fading, are used while training the autoencoder system. For SISO systems, the autoencoder system in IC demonstrates significant performance improvement compared to the conventional single-user systems by eliminating interference when there is channel state information (CSI) at the transmitter. The MIMO autoencoder system also shows significant performance improvements compared to the conventional single-user MIMO systems at SINR levels higher than 16dB. MIMO systems with different number of antennas are simulated to analyze the change in the system complexity and scalability. The information required at the transmitter; i.e. CSI from both the intended and interference links, and the autoencoder training time increases with increasing number of antennas for the autoencoder-based MIMO systems.","PeriodicalId":387855,"journal":{"name":"2018 IEEE International Conference on Communications (ICC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Learning a Physical Layer Scheme for the MIMO Interference Channel\",\"authors\":\"T. Erpek, Tim O'Shea, T. Clancy\",\"doi\":\"10.1109/ICC.2018.8422339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel physical layer scheme for multiple-input multiple-output (MIMO) communication systems based on unsupervised deep learning (DL) using an autoencoder in an interference channel (IC) environment. Moreover, it extends the single-input single-output (SISO) channel autoencoder to consider fading channel conditions. In both schemes, two physical layer communication system encoders and decoders are jointly optimized in the presence of interference to minimize their symbol error rate (SER). We analyze resulting SER performance for varying signal-to-interference-plus-noise-ratio (SINR) levels. Realistic channel effects; i.e. Rayleigh fading, are used while training the autoencoder system. For SISO systems, the autoencoder system in IC demonstrates significant performance improvement compared to the conventional single-user systems by eliminating interference when there is channel state information (CSI) at the transmitter. The MIMO autoencoder system also shows significant performance improvements compared to the conventional single-user MIMO systems at SINR levels higher than 16dB. MIMO systems with different number of antennas are simulated to analyze the change in the system complexity and scalability. The information required at the transmitter; i.e. CSI from both the intended and interference links, and the autoencoder training time increases with increasing number of antennas for the autoencoder-based MIMO systems.\",\"PeriodicalId\":387855,\"journal\":{\"name\":\"2018 IEEE International Conference on Communications (ICC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Communications (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2018.8422339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2018.8422339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文提出了一种基于无监督深度学习(DL)的多输入多输出(MIMO)通信系统的物理层方案,该方案在干扰信道(IC)环境中使用自编码器。此外,它扩展了单输入单输出(SISO)通道自编码器,以考虑衰落信道条件。在这两种方案中,两个物理层通信系统的编码器和解码器在存在干扰的情况下进行联合优化,以最小化它们的符号误码率(SER)。我们分析了不同信噪比(SINR)水平下产生的SER性能。逼真的通道效果;即瑞利衰落,在训练自编码器系统时使用。对于SISO系统,集成电路中的自编码器系统通过消除发射器上存在信道状态信息(CSI)时的干扰,与传统的单用户系统相比,显示出显著的性能改进。在信噪比高于16dB的情况下,与传统的单用户MIMO系统相比,MIMO自动编码器系统也显示出显著的性能改进。对不同天线数的MIMO系统进行了仿真,分析了系统复杂度和可扩展性的变化。发送器所需的信息;在基于自编码器的MIMO系统中,随着天线数量的增加,自编码器的训练时间也会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning a Physical Layer Scheme for the MIMO Interference Channel
This paper presents a novel physical layer scheme for multiple-input multiple-output (MIMO) communication systems based on unsupervised deep learning (DL) using an autoencoder in an interference channel (IC) environment. Moreover, it extends the single-input single-output (SISO) channel autoencoder to consider fading channel conditions. In both schemes, two physical layer communication system encoders and decoders are jointly optimized in the presence of interference to minimize their symbol error rate (SER). We analyze resulting SER performance for varying signal-to-interference-plus-noise-ratio (SINR) levels. Realistic channel effects; i.e. Rayleigh fading, are used while training the autoencoder system. For SISO systems, the autoencoder system in IC demonstrates significant performance improvement compared to the conventional single-user systems by eliminating interference when there is channel state information (CSI) at the transmitter. The MIMO autoencoder system also shows significant performance improvements compared to the conventional single-user MIMO systems at SINR levels higher than 16dB. MIMO systems with different number of antennas are simulated to analyze the change in the system complexity and scalability. The information required at the transmitter; i.e. CSI from both the intended and interference links, and the autoencoder training time increases with increasing number of antennas for the autoencoder-based MIMO systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信