{"title":"LSI产品质量和故障覆盖率","authors":"V. Agrawal, S. Seth, P. Agrawal","doi":"10.1145/62882.62930","DOIUrl":null,"url":null,"abstract":"At present, the relationship between fault coverage of LSI circuit tests and the tested product quality is not satisfactorily understood. Reported work on integrated circuits predicts, for an acceptable field reject rate, a fault coverage that is too high (99 percent or higher). This fault coverage is difficult to achieve for LSI circuits. This paper proposes a model of fault distribution for a chip. The number of faults on a defective chip is assumed to have a Poisson density for which the average value is determined through experiment on actual chips. The procedure, which relates the model to the chip being studied, is simple; one or more fabricated chip lots must be tested by a few preliminary test patterns. Once the model is characterized, the required value of fault coverage can be easily determined for any given field reject rate. The main advantage of such a model is that it adapts itself to the various characteristics of the chip (technology, feature size, manufacturing environment, etc.) and the fault model (e.g., stuck-type faults). As an example, the technique was applied to an LSI circuit; realistic results were obtained.","PeriodicalId":201443,"journal":{"name":"18th Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"LSI Product Quality and Fault Coverage\",\"authors\":\"V. Agrawal, S. Seth, P. Agrawal\",\"doi\":\"10.1145/62882.62930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the relationship between fault coverage of LSI circuit tests and the tested product quality is not satisfactorily understood. Reported work on integrated circuits predicts, for an acceptable field reject rate, a fault coverage that is too high (99 percent or higher). This fault coverage is difficult to achieve for LSI circuits. This paper proposes a model of fault distribution for a chip. The number of faults on a defective chip is assumed to have a Poisson density for which the average value is determined through experiment on actual chips. The procedure, which relates the model to the chip being studied, is simple; one or more fabricated chip lots must be tested by a few preliminary test patterns. Once the model is characterized, the required value of fault coverage can be easily determined for any given field reject rate. The main advantage of such a model is that it adapts itself to the various characteristics of the chip (technology, feature size, manufacturing environment, etc.) and the fault model (e.g., stuck-type faults). As an example, the technique was applied to an LSI circuit; realistic results were obtained.\",\"PeriodicalId\":201443,\"journal\":{\"name\":\"18th Design Automation Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/62882.62930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/62882.62930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
At present, the relationship between fault coverage of LSI circuit tests and the tested product quality is not satisfactorily understood. Reported work on integrated circuits predicts, for an acceptable field reject rate, a fault coverage that is too high (99 percent or higher). This fault coverage is difficult to achieve for LSI circuits. This paper proposes a model of fault distribution for a chip. The number of faults on a defective chip is assumed to have a Poisson density for which the average value is determined through experiment on actual chips. The procedure, which relates the model to the chip being studied, is simple; one or more fabricated chip lots must be tested by a few preliminary test patterns. Once the model is characterized, the required value of fault coverage can be easily determined for any given field reject rate. The main advantage of such a model is that it adapts itself to the various characteristics of the chip (technology, feature size, manufacturing environment, etc.) and the fault model (e.g., stuck-type faults). As an example, the technique was applied to an LSI circuit; realistic results were obtained.