在医院病房环境中的自动跌倒检测

A. Mecocci, F. Micheli, C. Zoppetti, Andrea Baghini
{"title":"在医院病房环境中的自动跌倒检测","authors":"A. Mecocci, F. Micheli, C. Zoppetti, Andrea Baghini","doi":"10.1109/COGINFOCOM.2016.7804537","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for the monitoring of hospitalized people, including fall detection capabilities, using an environmentally mounted depth imaging sensor. The purpose is to characterize the fall event, depending on the location of the person when the fall event happens. In particular, we distinguish two basic starting point conditions: fall from standing position (e.g. due to blood pressure failure) and fall out of bed (e.g. due to agitation). To achieve this goal, we exploit the context information to adaptively extract the person's silhouette and then reliably tracking the trajectory. If a fall occurs, the system is capable of recognize this event on the basis of the inferred starting condition. The current implementation has been tested on available online datasets and on a self-made dedicated dataset. In this latter dataset, we have included falls from standing position and falls out of bed, even in presence of occlusions.","PeriodicalId":440408,"journal":{"name":"2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic falls detection in hospital-room context\",\"authors\":\"A. Mecocci, F. Micheli, C. Zoppetti, Andrea Baghini\",\"doi\":\"10.1109/COGINFOCOM.2016.7804537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a framework for the monitoring of hospitalized people, including fall detection capabilities, using an environmentally mounted depth imaging sensor. The purpose is to characterize the fall event, depending on the location of the person when the fall event happens. In particular, we distinguish two basic starting point conditions: fall from standing position (e.g. due to blood pressure failure) and fall out of bed (e.g. due to agitation). To achieve this goal, we exploit the context information to adaptively extract the person's silhouette and then reliably tracking the trajectory. If a fall occurs, the system is capable of recognize this event on the basis of the inferred starting condition. The current implementation has been tested on available online datasets and on a self-made dedicated dataset. In this latter dataset, we have included falls from standing position and falls out of bed, even in presence of occlusions.\",\"PeriodicalId\":440408,\"journal\":{\"name\":\"2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COGINFOCOM.2016.7804537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINFOCOM.2016.7804537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一个框架,用于监测住院人员,包括跌倒检测能力,使用环境安装深度成像传感器。目的是根据坠落事件发生时人的位置来描述坠落事件的特征。特别是,我们区分了两种基本的起点条件:从站立位置摔倒(例如,由于血压衰竭)和从床上摔下来(例如,由于激动)。为了实现这一目标,我们利用上下文信息自适应提取人的轮廓,然后可靠地跟踪轨迹。如果发生坠落,系统能够根据推断的起始条件识别该事件。目前的实现已经在可用的在线数据集和自制的专用数据集上进行了测试。在后一个数据集中,我们包括了从站立位置跌倒和从床上跌倒,即使存在闭塞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic falls detection in hospital-room context
This paper presents a framework for the monitoring of hospitalized people, including fall detection capabilities, using an environmentally mounted depth imaging sensor. The purpose is to characterize the fall event, depending on the location of the person when the fall event happens. In particular, we distinguish two basic starting point conditions: fall from standing position (e.g. due to blood pressure failure) and fall out of bed (e.g. due to agitation). To achieve this goal, we exploit the context information to adaptively extract the person's silhouette and then reliably tracking the trajectory. If a fall occurs, the system is capable of recognize this event on the basis of the inferred starting condition. The current implementation has been tested on available online datasets and on a self-made dedicated dataset. In this latter dataset, we have included falls from standing position and falls out of bed, even in presence of occlusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信