PEVD算法的准酉矩阵行移校正截断

J. Corr, K. Thompson, Stephan Weiss, I. Proudler, J. McWhirter
{"title":"PEVD算法的准酉矩阵行移校正截断","authors":"J. Corr, K. Thompson, Stephan Weiss, I. Proudler, J. McWhirter","doi":"10.1109/EUSIPCO.2015.7362503","DOIUrl":null,"url":null,"abstract":"In this paper, we show that the paraunitary (PU) matrices that arise from the polynomial eigenvalue decomposition (PEVD) of a parahermitian matrix are not unique. In particular, arbitrary shifts (delays) of polynomials in one row of a PU matrix yield another PU matrix that admits the same PEVD. To keep the order of such a PU matrix as low as possible, we propose a row-shift correction. Using the example of an iterative PEVD algorithm with previously proposed truncation of the PU matrix, we demonstrate that a considerable shortening of the PU order can be accomplished when using row-corrected truncation.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Row-shift corrected truncation of paraunitary matrices for PEVD algorithms\",\"authors\":\"J. Corr, K. Thompson, Stephan Weiss, I. Proudler, J. McWhirter\",\"doi\":\"10.1109/EUSIPCO.2015.7362503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show that the paraunitary (PU) matrices that arise from the polynomial eigenvalue decomposition (PEVD) of a parahermitian matrix are not unique. In particular, arbitrary shifts (delays) of polynomials in one row of a PU matrix yield another PU matrix that admits the same PEVD. To keep the order of such a PU matrix as low as possible, we propose a row-shift correction. Using the example of an iterative PEVD algorithm with previously proposed truncation of the PU matrix, we demonstrate that a considerable shortening of the PU order can be accomplished when using row-corrected truncation.\",\"PeriodicalId\":401040,\"journal\":{\"name\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2015.7362503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

本文证明了由拟酉矩阵的多项式特征值分解(PEVD)得到的拟酉矩阵不是唯一的。特别是,在PU矩阵的一行中多项式的任意移位(延迟)产生另一个允许相同PEVD的PU矩阵。为了保持这样的PU矩阵的顺序尽可能低,我们提出了行移校正。使用先前提出的截断PU矩阵的迭代PEVD算法的示例,我们证明了当使用行校正截断时可以实现相当大的缩短PU顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Row-shift corrected truncation of paraunitary matrices for PEVD algorithms
In this paper, we show that the paraunitary (PU) matrices that arise from the polynomial eigenvalue decomposition (PEVD) of a parahermitian matrix are not unique. In particular, arbitrary shifts (delays) of polynomials in one row of a PU matrix yield another PU matrix that admits the same PEVD. To keep the order of such a PU matrix as low as possible, we propose a row-shift correction. Using the example of an iterative PEVD algorithm with previously proposed truncation of the PU matrix, we demonstrate that a considerable shortening of the PU order can be accomplished when using row-corrected truncation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信