在美国城市的气候适应性规划中纳入小规模降雨预测的不确定性

Tania Lopez‐Cantu, Marissa Webber, C. Samaras
{"title":"在美国城市的气候适应性规划中纳入小规模降雨预测的不确定性","authors":"Tania Lopez‐Cantu, Marissa Webber, C. Samaras","doi":"10.1088/2634-4505/ac8a6c","DOIUrl":null,"url":null,"abstract":"The planning, design, and maintenance of stormwater infrastructure must be informed by changing rainfall patterns due to climate change. However, there is little consensus on how future climate information should be used, or how uncertainties introduced by use of different methods and datasets should be characterized or managed. These uncertainties exacerbate existing challenges to using climate information on local or municipal scales. Here we analyze major cities in the U.S., 48 of which developed climate adaptation and resilience plans. Given the prevalence of depth duration frequency (DDF) curves for planning infrastructure for rainfall, we then assessed the underlying climate information used in these 48 plans to show how DDF curves used for resilience planning and the resulting outcomes can be affected by stakeholders’ methodological choices and datasets. For rainfall extremes, many resilience plans varied by trend detection method, data preprocessing steps, and size of study area, and all used only one of the available downscaled climate projection datasets. We evaluate the implications of uncertainties across five available climate datasets and show the level of climate resilience to extreme rainfall depends on the dataset selected for each city. We produce risk matrices for a broader set of 77 U.S. cities to highlight how local resilience strategies and decisions are sensitive to the climate projection dataset used in local adaptation plans. To help overcome barriers to using climate information, we provide an open dataset of future daily rainfall values for 2-, 5-, 10-, 25-, 50-, and 100 years annual recurrence intervals for 77 cities and compare resilience outcomes across available climate datasets that each city can use for comparison and for robust resilience planning. Because of uncertainty in climate projections, our results highlight the importance of no-regret and flexible resilience strategies that can be adjusted with new climate information.","PeriodicalId":309041,"journal":{"name":"Environmental Research: Infrastructure and Sustainability","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Incorporating uncertainty from downscaled rainfall projections into climate resilience planning in U.S. cities\",\"authors\":\"Tania Lopez‐Cantu, Marissa Webber, C. Samaras\",\"doi\":\"10.1088/2634-4505/ac8a6c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The planning, design, and maintenance of stormwater infrastructure must be informed by changing rainfall patterns due to climate change. However, there is little consensus on how future climate information should be used, or how uncertainties introduced by use of different methods and datasets should be characterized or managed. These uncertainties exacerbate existing challenges to using climate information on local or municipal scales. Here we analyze major cities in the U.S., 48 of which developed climate adaptation and resilience plans. Given the prevalence of depth duration frequency (DDF) curves for planning infrastructure for rainfall, we then assessed the underlying climate information used in these 48 plans to show how DDF curves used for resilience planning and the resulting outcomes can be affected by stakeholders’ methodological choices and datasets. For rainfall extremes, many resilience plans varied by trend detection method, data preprocessing steps, and size of study area, and all used only one of the available downscaled climate projection datasets. We evaluate the implications of uncertainties across five available climate datasets and show the level of climate resilience to extreme rainfall depends on the dataset selected for each city. We produce risk matrices for a broader set of 77 U.S. cities to highlight how local resilience strategies and decisions are sensitive to the climate projection dataset used in local adaptation plans. To help overcome barriers to using climate information, we provide an open dataset of future daily rainfall values for 2-, 5-, 10-, 25-, 50-, and 100 years annual recurrence intervals for 77 cities and compare resilience outcomes across available climate datasets that each city can use for comparison and for robust resilience planning. Because of uncertainty in climate projections, our results highlight the importance of no-regret and flexible resilience strategies that can be adjusted with new climate information.\",\"PeriodicalId\":309041,\"journal\":{\"name\":\"Environmental Research: Infrastructure and Sustainability\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research: Infrastructure and Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4505/ac8a6c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research: Infrastructure and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4505/ac8a6c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于气候变化,雨水基础设施的规划、设计和维护必须考虑到降雨模式的变化。然而,对于如何利用未来的气候信息,或者如何描述或管理因使用不同的方法和数据集而引入的不确定性,几乎没有达成共识。这些不确定性加剧了在地方或城市尺度上使用气候信息的现有挑战。在这里,我们分析了美国的主要城市,其中48个城市制定了气候适应和恢复计划。考虑到深度持续时间频率(DDF)曲线在规划降雨基础设施方面的普遍应用,我们随后评估了这48个规划中使用的潜在气候信息,以显示DDF曲线如何用于弹性规划以及由此产生的结果可能受到利益相关者的方法选择和数据集的影响。对于极端降雨,许多恢复力计划因趋势检测方法、数据预处理步骤和研究区域大小而异,并且都只使用了一个可用的缩小比例的气候预估数据集。我们评估了五个可用气候数据集的不确定性的影响,并显示了气候对极端降雨的适应能力水平取决于为每个城市选择的数据集。我们为美国77个城市制作了风险矩阵,以突出显示当地适应计划中使用的气候预测数据集对当地恢复力战略和决策的敏感性。为了帮助克服使用气候信息的障碍,我们提供了77个城市的2年、5年、10年、25年、50年和100年年度复发间隔的未来日降雨量的开放数据集,并比较了每个城市可用于比较和健全的恢复力规划的现有气候数据集的恢复力结果。由于气候预测的不确定性,我们的研究结果强调了无遗憾和灵活的弹性策略的重要性,这些策略可以根据新的气候信息进行调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating uncertainty from downscaled rainfall projections into climate resilience planning in U.S. cities
The planning, design, and maintenance of stormwater infrastructure must be informed by changing rainfall patterns due to climate change. However, there is little consensus on how future climate information should be used, or how uncertainties introduced by use of different methods and datasets should be characterized or managed. These uncertainties exacerbate existing challenges to using climate information on local or municipal scales. Here we analyze major cities in the U.S., 48 of which developed climate adaptation and resilience plans. Given the prevalence of depth duration frequency (DDF) curves for planning infrastructure for rainfall, we then assessed the underlying climate information used in these 48 plans to show how DDF curves used for resilience planning and the resulting outcomes can be affected by stakeholders’ methodological choices and datasets. For rainfall extremes, many resilience plans varied by trend detection method, data preprocessing steps, and size of study area, and all used only one of the available downscaled climate projection datasets. We evaluate the implications of uncertainties across five available climate datasets and show the level of climate resilience to extreme rainfall depends on the dataset selected for each city. We produce risk matrices for a broader set of 77 U.S. cities to highlight how local resilience strategies and decisions are sensitive to the climate projection dataset used in local adaptation plans. To help overcome barriers to using climate information, we provide an open dataset of future daily rainfall values for 2-, 5-, 10-, 25-, 50-, and 100 years annual recurrence intervals for 77 cities and compare resilience outcomes across available climate datasets that each city can use for comparison and for robust resilience planning. Because of uncertainty in climate projections, our results highlight the importance of no-regret and flexible resilience strategies that can be adjusted with new climate information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信