Young-Sik Kim, Jiwoong Jang, Sang-Hyo Kim, Jong-Seon No
{"title":"具有最优自相关的新四元序列","authors":"Young-Sik Kim, Jiwoong Jang, Sang-Hyo Kim, Jong-Seon No","doi":"10.1109/ISIT.2009.5205276","DOIUrl":null,"url":null,"abstract":"We propose a new construction of quaternary sequences using the reverse Gray mapping of a pair of binary Sidel'nikov sequences. The proposed construction provides sequences of even period N with the maximum nontrivial auto-correlation magnitude, Rmax = 2. For N ≡ 0 mod 4, the new quaternary sequences have the optimal Rmax = 2 and are almost-balanced in contrast to the only earlier optimal construction Sj [1].","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"New quaternary sequences with optimal autocorrelation\",\"authors\":\"Young-Sik Kim, Jiwoong Jang, Sang-Hyo Kim, Jong-Seon No\",\"doi\":\"10.1109/ISIT.2009.5205276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new construction of quaternary sequences using the reverse Gray mapping of a pair of binary Sidel'nikov sequences. The proposed construction provides sequences of even period N with the maximum nontrivial auto-correlation magnitude, Rmax = 2. For N ≡ 0 mod 4, the new quaternary sequences have the optimal Rmax = 2 and are almost-balanced in contrast to the only earlier optimal construction Sj [1].\",\"PeriodicalId\":412925,\"journal\":{\"name\":\"2009 IEEE International Symposium on Information Theory\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2009.5205276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
摘要
提出了一种利用二元Sidel'nikov序列的反向灰度映射构造四元序列的新方法。该构造提供了周期为N的偶序列,其最大非平凡自相关幅度为Rmax = 2。对于N≡0 mod 4,新的四元序列具有最优Rmax = 2,并且与之前唯一的最优构造Sj[1]相比几乎是平衡的。
New quaternary sequences with optimal autocorrelation
We propose a new construction of quaternary sequences using the reverse Gray mapping of a pair of binary Sidel'nikov sequences. The proposed construction provides sequences of even period N with the maximum nontrivial auto-correlation magnitude, Rmax = 2. For N ≡ 0 mod 4, the new quaternary sequences have the optimal Rmax = 2 and are almost-balanced in contrast to the only earlier optimal construction Sj [1].