超声软化球粘接过程的热-力学建模

A. Wright, S. Koffel, P. Pichler, H. Enichlmair, R. Minixhofer, E. Wachmann
{"title":"超声软化球粘接过程的热-力学建模","authors":"A. Wright, S. Koffel, P. Pichler, H. Enichlmair, R. Minixhofer, E. Wachmann","doi":"10.1109/EUROSIME.2013.6529933","DOIUrl":null,"url":null,"abstract":"For an assessment of the stresses occurring during ball bonding of high-voltage CMOS chips in a structure comprising a thin and a thick silicon dioxide layer below the bonding pad, a dynamic model of the process was set up and the materials parameters were calibrated. For a realistic result of the deformation of the bonding ball during the ultrasonic stage, up to 60 ultrasonic cycles were simulated. To reproduce the final height of the bonding ball, dynamically increased friction between the ball and the bonding pad as well as ultrasonic softening of the metals within the model had to be taken into account. For a more sensitive prediction of failure, the conventional failure criterion based on the ultimate tensile strength of brittle materials was complemented by an additional criterion suggested by Christensen which takes the combined effects of perpendicular tensile and compressive principle stresses into account. This yielded a prediction of earlier failure for the thinner oxide layer while no failure was predicted for the thick isolation oxide layer.","PeriodicalId":270532,"journal":{"name":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the thermo-mechanical modelling of a ball bonding process with ultrasonic softening\",\"authors\":\"A. Wright, S. Koffel, P. Pichler, H. Enichlmair, R. Minixhofer, E. Wachmann\",\"doi\":\"10.1109/EUROSIME.2013.6529933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an assessment of the stresses occurring during ball bonding of high-voltage CMOS chips in a structure comprising a thin and a thick silicon dioxide layer below the bonding pad, a dynamic model of the process was set up and the materials parameters were calibrated. For a realistic result of the deformation of the bonding ball during the ultrasonic stage, up to 60 ultrasonic cycles were simulated. To reproduce the final height of the bonding ball, dynamically increased friction between the ball and the bonding pad as well as ultrasonic softening of the metals within the model had to be taken into account. For a more sensitive prediction of failure, the conventional failure criterion based on the ultimate tensile strength of brittle materials was complemented by an additional criterion suggested by Christensen which takes the combined effects of perpendicular tensile and compressive principle stresses into account. This yielded a prediction of earlier failure for the thinner oxide layer while no failure was predicted for the thick isolation oxide layer.\",\"PeriodicalId\":270532,\"journal\":{\"name\":\"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2013.6529933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2013.6529933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

为了评估高压CMOS芯片在键合垫下由薄层和厚层二氧化硅组成的结构中球键合过程中的应力,建立了该过程的动态模型并校准了材料参数。为了获得超声阶段粘接球变形的真实结果,模拟了多达60次的超声循环。为了重现粘接球的最终高度,必须考虑到粘接球和粘接垫之间动态增加的摩擦以及模型内金属的超声波软化。为了更灵敏地预测破坏,传统的基于脆性材料极限抗拉强度的破坏准则被Christensen提出的附加准则所补充,该准则考虑了垂直拉伸和压缩原理应力的综合影响。这产生了较薄的氧化层较早失效的预测,而厚的隔离氧化层没有失效的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the thermo-mechanical modelling of a ball bonding process with ultrasonic softening
For an assessment of the stresses occurring during ball bonding of high-voltage CMOS chips in a structure comprising a thin and a thick silicon dioxide layer below the bonding pad, a dynamic model of the process was set up and the materials parameters were calibrated. For a realistic result of the deformation of the bonding ball during the ultrasonic stage, up to 60 ultrasonic cycles were simulated. To reproduce the final height of the bonding ball, dynamically increased friction between the ball and the bonding pad as well as ultrasonic softening of the metals within the model had to be taken into account. For a more sensitive prediction of failure, the conventional failure criterion based on the ultimate tensile strength of brittle materials was complemented by an additional criterion suggested by Christensen which takes the combined effects of perpendicular tensile and compressive principle stresses into account. This yielded a prediction of earlier failure for the thinner oxide layer while no failure was predicted for the thick isolation oxide layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信