面向对象遥感图像分类中分割参数的选择

S. Bo, Xinchao Han
{"title":"面向对象遥感图像分类中分割参数的选择","authors":"S. Bo, Xinchao Han","doi":"10.1109/ICICTA.2010.710","DOIUrl":null,"url":null,"abstract":"In object-oriented classification of remote sensing imagery, image segmentation is the first step and its quality has significant effect on resulting classification. The quality of image segmentation is always controlled by user-supplied parameters. However, there is not a common way to guide the user selecting a suitable parameter for image segmentation. This paper focuses on the problem of parameter selection for region-growing method, which is one of the most popular segmentation techniques in object-oriented classification of remotely sensed imagery. The presented method selects the suitable parameters by means of training sample areas of each class chosen from an image. The parameter selection method is verified in an experiment of object-oriented classification.","PeriodicalId":418904,"journal":{"name":"2010 International Conference on Intelligent Computation Technology and Automation","volume":"60 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parameter Selection for Segmentation in Object-Oriented Classification of Remotely Sensed Imagery\",\"authors\":\"S. Bo, Xinchao Han\",\"doi\":\"10.1109/ICICTA.2010.710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In object-oriented classification of remote sensing imagery, image segmentation is the first step and its quality has significant effect on resulting classification. The quality of image segmentation is always controlled by user-supplied parameters. However, there is not a common way to guide the user selecting a suitable parameter for image segmentation. This paper focuses on the problem of parameter selection for region-growing method, which is one of the most popular segmentation techniques in object-oriented classification of remotely sensed imagery. The presented method selects the suitable parameters by means of training sample areas of each class chosen from an image. The parameter selection method is verified in an experiment of object-oriented classification.\",\"PeriodicalId\":418904,\"journal\":{\"name\":\"2010 International Conference on Intelligent Computation Technology and Automation\",\"volume\":\"60 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Intelligent Computation Technology and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICTA.2010.710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Computation Technology and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICTA.2010.710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在面向对象的遥感图像分类中,图像分割是第一步,其质量对分类结果有重要影响。图像分割的质量总是由用户提供的参数控制。然而,目前还没有一种通用的方法来指导用户选择合适的图像分割参数。区域生长方法是面向对象遥感图像分类中最流行的分割方法之一,本文主要研究了区域生长方法的参数选择问题。该方法通过从图像中选取每个类别的训练样本面积来选择合适的参数。在一个面向对象的分类实验中验证了参数选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Selection for Segmentation in Object-Oriented Classification of Remotely Sensed Imagery
In object-oriented classification of remote sensing imagery, image segmentation is the first step and its quality has significant effect on resulting classification. The quality of image segmentation is always controlled by user-supplied parameters. However, there is not a common way to guide the user selecting a suitable parameter for image segmentation. This paper focuses on the problem of parameter selection for region-growing method, which is one of the most popular segmentation techniques in object-oriented classification of remotely sensed imagery. The presented method selects the suitable parameters by means of training sample areas of each class chosen from an image. The parameter selection method is verified in an experiment of object-oriented classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信