基于知识引导随机森林的考虑用户重复话语的响应义务估计

Kotaro Funakoshi, Ryota Yamagami, S. Sugano, Mikio Nakano
{"title":"基于知识引导随机森林的考虑用户重复话语的响应义务估计","authors":"Kotaro Funakoshi, Ryota Yamagami, S. Sugano, Mikio Nakano","doi":"10.1109/Humanoids43949.2019.9035079","DOIUrl":null,"url":null,"abstract":"Response obligation is whether a spoken dialogue system should react to an input sound. This paper focuses on the false negative errors in response obligation estimation (ROE) that are displayed as the system's neglect of its users. When the users repeat after the system ignores their speech, ROE will likely fail again because the repeated input is similar to the previous input. Therefore, we propose an improved ROE method that considers users' repetitions. First, we show that a simple concatenation of ROE and repetition features is better than two other integration architectures. Then, we propose a modified random forest algorithm that incorporates human domain knowledge. The effectiveness is demonstrated with simulated repetitions as a 7.6-point gain from the baseline.","PeriodicalId":404758,"journal":{"name":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response Obligation Estimation That Considers Users' Repetitive Utterances using Knowledge-Guided Random Forest\",\"authors\":\"Kotaro Funakoshi, Ryota Yamagami, S. Sugano, Mikio Nakano\",\"doi\":\"10.1109/Humanoids43949.2019.9035079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Response obligation is whether a spoken dialogue system should react to an input sound. This paper focuses on the false negative errors in response obligation estimation (ROE) that are displayed as the system's neglect of its users. When the users repeat after the system ignores their speech, ROE will likely fail again because the repeated input is similar to the previous input. Therefore, we propose an improved ROE method that considers users' repetitions. First, we show that a simple concatenation of ROE and repetition features is better than two other integration architectures. Then, we propose a modified random forest algorithm that incorporates human domain knowledge. The effectiveness is demonstrated with simulated repetitions as a 7.6-point gain from the baseline.\",\"PeriodicalId\":404758,\"journal\":{\"name\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Humanoids43949.2019.9035079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids43949.2019.9035079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

响应义务是指语音对话系统是否应该对输入声音做出反应。本文主要研究响应义务估计(ROE)中的假负误差,这种误差表现为系统对用户的忽视。当用户在系统忽略其语音后重复时,由于重复的输入与之前的输入相似,ROE很可能会再次失败。因此,我们提出了一种考虑用户重复次数的改进ROE方法。首先,我们证明了ROE和重复特征的简单连接优于其他两种集成架构。在此基础上,提出了一种结合人类领域知识的改进随机森林算法。通过模拟重复,从基线增加7.6分,证明了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Response Obligation Estimation That Considers Users' Repetitive Utterances using Knowledge-Guided Random Forest
Response obligation is whether a spoken dialogue system should react to an input sound. This paper focuses on the false negative errors in response obligation estimation (ROE) that are displayed as the system's neglect of its users. When the users repeat after the system ignores their speech, ROE will likely fail again because the repeated input is similar to the previous input. Therefore, we propose an improved ROE method that considers users' repetitions. First, we show that a simple concatenation of ROE and repetition features is better than two other integration architectures. Then, we propose a modified random forest algorithm that incorporates human domain knowledge. The effectiveness is demonstrated with simulated repetitions as a 7.6-point gain from the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信