{"title":"矢量批处理私有信息检索","authors":"M. Mughees, Ling Ren","doi":"10.1109/SP46215.2023.10179329","DOIUrl":null,"url":null,"abstract":"This paper studies Batch Private Information Retrieval (BatchPIR), a variant of private information retrieval (PIR) where the client wants to retrieve multiple entries from the server in one batch. BatchPIR matches the use case of many practical applications and holds the potential for substantial efficiency improvements over PIR in terms of amortized cost per query. Existing BatchPIR schemes have achieved decent computation efficiency but have not been able to improve communication efficiency at all. Using vectorized homomorphic encryption, we present the first BatchPIR protocol that is efficient in both computation and communication for a variety of database configurations. Specifically, to retrieve a batch of 256 entries from a database with one million entries of 256 bytes each, the communication cost of our scheme is 7.5x to 98.5x better than state-of-the-art solutions.","PeriodicalId":439989,"journal":{"name":"2023 IEEE Symposium on Security and Privacy (SP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Vectorized Batch Private Information Retrieval\",\"authors\":\"M. Mughees, Ling Ren\",\"doi\":\"10.1109/SP46215.2023.10179329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies Batch Private Information Retrieval (BatchPIR), a variant of private information retrieval (PIR) where the client wants to retrieve multiple entries from the server in one batch. BatchPIR matches the use case of many practical applications and holds the potential for substantial efficiency improvements over PIR in terms of amortized cost per query. Existing BatchPIR schemes have achieved decent computation efficiency but have not been able to improve communication efficiency at all. Using vectorized homomorphic encryption, we present the first BatchPIR protocol that is efficient in both computation and communication for a variety of database configurations. Specifically, to retrieve a batch of 256 entries from a database with one million entries of 256 bytes each, the communication cost of our scheme is 7.5x to 98.5x better than state-of-the-art solutions.\",\"PeriodicalId\":439989,\"journal\":{\"name\":\"2023 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP46215.2023.10179329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP46215.2023.10179329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
摘要
Batch Private Information Retrieval (BatchPIR)是私有信息检索(Private Information Retrieval, PIR)的一种变体,其中客户端希望一次批量地从服务器中检索多个条目。BatchPIR与许多实际应用程序的用例相匹配,并且在每个查询的平摊成本方面具有比PIR显著提高效率的潜力。现有的BatchPIR方案虽然取得了不错的计算效率,但根本无法提高通信效率。使用向量化同态加密,我们提出了第一个在各种数据库配置的计算和通信方面都很有效的BatchPIR协议。具体来说,要从数据库中检索一批256个条目,每个条目有一百万个条目,每个条目256字节,我们方案的通信成本比最先进的解决方案低7.5到98.5倍。
This paper studies Batch Private Information Retrieval (BatchPIR), a variant of private information retrieval (PIR) where the client wants to retrieve multiple entries from the server in one batch. BatchPIR matches the use case of many practical applications and holds the potential for substantial efficiency improvements over PIR in terms of amortized cost per query. Existing BatchPIR schemes have achieved decent computation efficiency but have not been able to improve communication efficiency at all. Using vectorized homomorphic encryption, we present the first BatchPIR protocol that is efficient in both computation and communication for a variety of database configurations. Specifically, to retrieve a batch of 256 entries from a database with one million entries of 256 bytes each, the communication cost of our scheme is 7.5x to 98.5x better than state-of-the-art solutions.