高速大流量交通工程

Tian Jin, Chris Tracy, M. Veeraraghavan, Zhenzhen Yan
{"title":"高速大流量交通工程","authors":"Tian Jin, Chris Tracy, M. Veeraraghavan, Zhenzhen Yan","doi":"10.1109/HPSR.2013.6602302","DOIUrl":null,"url":null,"abstract":"High-rate large-sized (α) flows have adverse effects on delay-sensitive flows. Research-and-education network providers are interested in identifying such flows within their networks, and directing these flows to traffic-engineered QoS-controlled virtual circuits. To achieve this goal, a design is proposed for a hybrid network traffic engineering system (HNTES) that would run on an external server, gather NetFlow reports from routers, analyze these reports to identify α-flow source/destination address prefixes, configure firewall filter rules at ingress routers to extract future flows and redirect them to previously provisioned intra-domain virtual circuits. This paper presents an evaluation of this HNTES design using NetFlow reports collected over a 7-month period from four ESnet routers. Our analysis shows that had HNTES been deployed, it would have been highly effective, e.g., > 90% of α-bytes that arrived at the four routers over the 7-month period would have been redirected to virtual circuits. Design aspects such as whether to use /24 subnet IDs or /32 addresses in firewall filters, and which router interfaces' NetFlow reports to include in the HNTES analysis, are studied.","PeriodicalId":220418,"journal":{"name":"2013 IEEE 14th International Conference on High Performance Switching and Routing (HPSR)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Traffic engineering of high-rate large-sized flows\",\"authors\":\"Tian Jin, Chris Tracy, M. Veeraraghavan, Zhenzhen Yan\",\"doi\":\"10.1109/HPSR.2013.6602302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-rate large-sized (α) flows have adverse effects on delay-sensitive flows. Research-and-education network providers are interested in identifying such flows within their networks, and directing these flows to traffic-engineered QoS-controlled virtual circuits. To achieve this goal, a design is proposed for a hybrid network traffic engineering system (HNTES) that would run on an external server, gather NetFlow reports from routers, analyze these reports to identify α-flow source/destination address prefixes, configure firewall filter rules at ingress routers to extract future flows and redirect them to previously provisioned intra-domain virtual circuits. This paper presents an evaluation of this HNTES design using NetFlow reports collected over a 7-month period from four ESnet routers. Our analysis shows that had HNTES been deployed, it would have been highly effective, e.g., > 90% of α-bytes that arrived at the four routers over the 7-month period would have been redirected to virtual circuits. Design aspects such as whether to use /24 subnet IDs or /32 addresses in firewall filters, and which router interfaces' NetFlow reports to include in the HNTES analysis, are studied.\",\"PeriodicalId\":220418,\"journal\":{\"name\":\"2013 IEEE 14th International Conference on High Performance Switching and Routing (HPSR)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Conference on High Performance Switching and Routing (HPSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPSR.2013.6602302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on High Performance Switching and Routing (HPSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPSR.2013.6602302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

高速率大尺寸(α)流对延迟敏感流有不利影响。研究和教育网络提供商对识别其网络中的此类流很感兴趣,并将这些流引导到流量工程qos控制的虚拟电路中。为了实现这一目标,提出了一种混合网络流量工程系统(HNTES)的设计,该系统将运行在外部服务器上,从路由器收集NetFlow报告,分析这些报告以识别α-流源/目的地址前缀,在入口路由器上配置防火墙过滤规则以提取未来的流量并将其重定向到先前配置的域内虚拟电路。本文利用从四个ESnet路由器收集的7个月的NetFlow报告对该HNTES设计进行了评估。我们的分析表明,如果部署了HNTES,它将是非常有效的,例如,在7个月内到达四个路由器的> 90%的α-字节将被重定向到虚拟电路。设计方面,如在防火墙过滤器中是否使用/24子网id或/32地址,以及在HNTES分析中包含哪些路由器接口的NetFlow报告,进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic engineering of high-rate large-sized flows
High-rate large-sized (α) flows have adverse effects on delay-sensitive flows. Research-and-education network providers are interested in identifying such flows within their networks, and directing these flows to traffic-engineered QoS-controlled virtual circuits. To achieve this goal, a design is proposed for a hybrid network traffic engineering system (HNTES) that would run on an external server, gather NetFlow reports from routers, analyze these reports to identify α-flow source/destination address prefixes, configure firewall filter rules at ingress routers to extract future flows and redirect them to previously provisioned intra-domain virtual circuits. This paper presents an evaluation of this HNTES design using NetFlow reports collected over a 7-month period from four ESnet routers. Our analysis shows that had HNTES been deployed, it would have been highly effective, e.g., > 90% of α-bytes that arrived at the four routers over the 7-month period would have been redirected to virtual circuits. Design aspects such as whether to use /24 subnet IDs or /32 addresses in firewall filters, and which router interfaces' NetFlow reports to include in the HNTES analysis, are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信