Tian Jin, Chris Tracy, M. Veeraraghavan, Zhenzhen Yan
{"title":"高速大流量交通工程","authors":"Tian Jin, Chris Tracy, M. Veeraraghavan, Zhenzhen Yan","doi":"10.1109/HPSR.2013.6602302","DOIUrl":null,"url":null,"abstract":"High-rate large-sized (α) flows have adverse effects on delay-sensitive flows. Research-and-education network providers are interested in identifying such flows within their networks, and directing these flows to traffic-engineered QoS-controlled virtual circuits. To achieve this goal, a design is proposed for a hybrid network traffic engineering system (HNTES) that would run on an external server, gather NetFlow reports from routers, analyze these reports to identify α-flow source/destination address prefixes, configure firewall filter rules at ingress routers to extract future flows and redirect them to previously provisioned intra-domain virtual circuits. This paper presents an evaluation of this HNTES design using NetFlow reports collected over a 7-month period from four ESnet routers. Our analysis shows that had HNTES been deployed, it would have been highly effective, e.g., > 90% of α-bytes that arrived at the four routers over the 7-month period would have been redirected to virtual circuits. Design aspects such as whether to use /24 subnet IDs or /32 addresses in firewall filters, and which router interfaces' NetFlow reports to include in the HNTES analysis, are studied.","PeriodicalId":220418,"journal":{"name":"2013 IEEE 14th International Conference on High Performance Switching and Routing (HPSR)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Traffic engineering of high-rate large-sized flows\",\"authors\":\"Tian Jin, Chris Tracy, M. Veeraraghavan, Zhenzhen Yan\",\"doi\":\"10.1109/HPSR.2013.6602302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-rate large-sized (α) flows have adverse effects on delay-sensitive flows. Research-and-education network providers are interested in identifying such flows within their networks, and directing these flows to traffic-engineered QoS-controlled virtual circuits. To achieve this goal, a design is proposed for a hybrid network traffic engineering system (HNTES) that would run on an external server, gather NetFlow reports from routers, analyze these reports to identify α-flow source/destination address prefixes, configure firewall filter rules at ingress routers to extract future flows and redirect them to previously provisioned intra-domain virtual circuits. This paper presents an evaluation of this HNTES design using NetFlow reports collected over a 7-month period from four ESnet routers. Our analysis shows that had HNTES been deployed, it would have been highly effective, e.g., > 90% of α-bytes that arrived at the four routers over the 7-month period would have been redirected to virtual circuits. Design aspects such as whether to use /24 subnet IDs or /32 addresses in firewall filters, and which router interfaces' NetFlow reports to include in the HNTES analysis, are studied.\",\"PeriodicalId\":220418,\"journal\":{\"name\":\"2013 IEEE 14th International Conference on High Performance Switching and Routing (HPSR)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Conference on High Performance Switching and Routing (HPSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPSR.2013.6602302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on High Performance Switching and Routing (HPSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPSR.2013.6602302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Traffic engineering of high-rate large-sized flows
High-rate large-sized (α) flows have adverse effects on delay-sensitive flows. Research-and-education network providers are interested in identifying such flows within their networks, and directing these flows to traffic-engineered QoS-controlled virtual circuits. To achieve this goal, a design is proposed for a hybrid network traffic engineering system (HNTES) that would run on an external server, gather NetFlow reports from routers, analyze these reports to identify α-flow source/destination address prefixes, configure firewall filter rules at ingress routers to extract future flows and redirect them to previously provisioned intra-domain virtual circuits. This paper presents an evaluation of this HNTES design using NetFlow reports collected over a 7-month period from four ESnet routers. Our analysis shows that had HNTES been deployed, it would have been highly effective, e.g., > 90% of α-bytes that arrived at the four routers over the 7-month period would have been redirected to virtual circuits. Design aspects such as whether to use /24 subnet IDs or /32 addresses in firewall filters, and which router interfaces' NetFlow reports to include in the HNTES analysis, are studied.