染料敏化太阳能电池密封胶的材料表征及工艺优化

Changwoon Han, Seungil Park
{"title":"染料敏化太阳能电池密封胶的材料表征及工艺优化","authors":"Changwoon Han, Seungil Park","doi":"10.1109/EUROSIME.2015.7103118","DOIUrl":null,"url":null,"abstract":"Large-scaled dye-sensitized solar cell (DSC) modules are recently developed for building-integrated photovoltaic (BIPV) applications. In the modules, two glasses with electrodes and dye are sealed together to prevent the leakage of liquid electrolyte. It is known that DSC modules deteriorate rapidly under high temperature conditions. Previous studies showed that expansion of liquid electrolyte in the module is the main reason for the degradation; the expansion of electrolyte induces the breakage of sealant material of DSC module in high temperature. This study investigates how the sealant curing process affects the integrity of DSC module in high temperature. Sealant samples are made up by several UV curing times. Shadow moiré technique is used to measure the coefficient of thermal expansion (CTE) of the sealant samples. With the test results, finite element analyses are conducted to optimize the curing process time. It is finally suggested that the longer the curing time, the more robust the DSC module.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Material characterization and process optimization of dye-sensitized solar cell sealant\",\"authors\":\"Changwoon Han, Seungil Park\",\"doi\":\"10.1109/EUROSIME.2015.7103118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scaled dye-sensitized solar cell (DSC) modules are recently developed for building-integrated photovoltaic (BIPV) applications. In the modules, two glasses with electrodes and dye are sealed together to prevent the leakage of liquid electrolyte. It is known that DSC modules deteriorate rapidly under high temperature conditions. Previous studies showed that expansion of liquid electrolyte in the module is the main reason for the degradation; the expansion of electrolyte induces the breakage of sealant material of DSC module in high temperature. This study investigates how the sealant curing process affects the integrity of DSC module in high temperature. Sealant samples are made up by several UV curing times. Shadow moiré technique is used to measure the coefficient of thermal expansion (CTE) of the sealant samples. With the test results, finite element analyses are conducted to optimize the curing process time. It is finally suggested that the longer the curing time, the more robust the DSC module.\",\"PeriodicalId\":250897,\"journal\":{\"name\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2015.7103118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

大规模染料敏化太阳能电池(DSC)模块是近年来发展起来的用于建筑集成光伏(BIPV)应用的技术。在模块中,两个带有电极和染料的玻璃被密封在一起,以防止液体电解质泄漏。众所周知,DSC模块在高温条件下会迅速恶化。以往的研究表明,模块内液体电解质的膨胀是导致降解的主要原因;电解液的膨胀导致DSC模块密封材料在高温下断裂。研究了密封胶固化过程对高温下DSC模块完整性的影响。密封胶样品由几次紫外线固化时间组成。采用阴影云纹法测量了密封胶样品的热膨胀系数。结合试验结果,进行了有限元分析,优化了固化时间。结果表明,固化时间越长,DSC模块的鲁棒性越强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Material characterization and process optimization of dye-sensitized solar cell sealant
Large-scaled dye-sensitized solar cell (DSC) modules are recently developed for building-integrated photovoltaic (BIPV) applications. In the modules, two glasses with electrodes and dye are sealed together to prevent the leakage of liquid electrolyte. It is known that DSC modules deteriorate rapidly under high temperature conditions. Previous studies showed that expansion of liquid electrolyte in the module is the main reason for the degradation; the expansion of electrolyte induces the breakage of sealant material of DSC module in high temperature. This study investigates how the sealant curing process affects the integrity of DSC module in high temperature. Sealant samples are made up by several UV curing times. Shadow moiré technique is used to measure the coefficient of thermal expansion (CTE) of the sealant samples. With the test results, finite element analyses are conducted to optimize the curing process time. It is finally suggested that the longer the curing time, the more robust the DSC module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信