基于概率模型的图像去噪与细节保留

T. Liu, Huiyu Zhou, F. Lin, Y. Pang, Ji Wu
{"title":"基于概率模型的图像去噪与细节保留","authors":"T. Liu, Huiyu Zhou, F. Lin, Y. Pang, Ji Wu","doi":"10.1109/SPCOM.2004.1458403","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel noise suppression and detail preservation algorithm. As a first step, the test image is pre-processed through a multiresolution analysis employing the discrete wavelet transform. Then, we design a fast and robust total variation technique, incorporating a statistical representation in the style of maximum likelihood estimation. Finally, we compare this proposed approach to current state-of-the-art denoising methods applied on synthetic and real images. The results demonstrate the encouraging performance of our algorithm.","PeriodicalId":424981,"journal":{"name":"2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image denoising and detail preservation by probabilistic models\",\"authors\":\"T. Liu, Huiyu Zhou, F. Lin, Y. Pang, Ji Wu\",\"doi\":\"10.1109/SPCOM.2004.1458403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel noise suppression and detail preservation algorithm. As a first step, the test image is pre-processed through a multiresolution analysis employing the discrete wavelet transform. Then, we design a fast and robust total variation technique, incorporating a statistical representation in the style of maximum likelihood estimation. Finally, we compare this proposed approach to current state-of-the-art denoising methods applied on synthetic and real images. The results demonstrate the encouraging performance of our algorithm.\",\"PeriodicalId\":424981,\"journal\":{\"name\":\"2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPCOM.2004.1458403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM.2004.1458403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的噪声抑制和细节保存算法。作为第一步,测试图像是通过多分辨率分析预处理采用离散小波变换。然后,我们设计了一种快速和鲁棒的总变差技术,结合了极大似然估计的统计表示。最后,我们将该方法与当前应用于合成图像和真实图像的最先进的去噪方法进行了比较。结果表明,我们的算法具有令人鼓舞的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image denoising and detail preservation by probabilistic models
In this paper, we present a novel noise suppression and detail preservation algorithm. As a first step, the test image is pre-processed through a multiresolution analysis employing the discrete wavelet transform. Then, we design a fast and robust total variation technique, incorporating a statistical representation in the style of maximum likelihood estimation. Finally, we compare this proposed approach to current state-of-the-art denoising methods applied on synthetic and real images. The results demonstrate the encouraging performance of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信