Q. Xu, Y. Shimamura, Y. Yamanashi, N. Yoshikawa, T. Ortlepp
{"title":"基于整数硬件算法的单通量量子电子学计算能量效率分析","authors":"Q. Xu, Y. Shimamura, Y. Yamanashi, N. Yoshikawa, T. Ortlepp","doi":"10.1109/ISEC.2013.6604280","DOIUrl":null,"url":null,"abstract":"We designed and implemented a single-flux-quantum (SFQ) based hardware-algorithm known as the 3n+1 conjecture. The circuit consists of a 16-bit integer register, a high-frequency clock generator and a central processor. This design can perform with a maximum clock frequency of 90 GHz with a total power consumption of about 0.85 mW based on the AIST 10 kA/cm2 advanced Nb process. The power consumption was further reduced by using an LR-biasing approach.","PeriodicalId":233581,"journal":{"name":"2013 IEEE 14th International Superconductive Electronics Conference (ISEC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of computational energy efficiency in single-flux-quantum electronics by implementing an integer-based hardware-algorithm\",\"authors\":\"Q. Xu, Y. Shimamura, Y. Yamanashi, N. Yoshikawa, T. Ortlepp\",\"doi\":\"10.1109/ISEC.2013.6604280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We designed and implemented a single-flux-quantum (SFQ) based hardware-algorithm known as the 3n+1 conjecture. The circuit consists of a 16-bit integer register, a high-frequency clock generator and a central processor. This design can perform with a maximum clock frequency of 90 GHz with a total power consumption of about 0.85 mW based on the AIST 10 kA/cm2 advanced Nb process. The power consumption was further reduced by using an LR-biasing approach.\",\"PeriodicalId\":233581,\"journal\":{\"name\":\"2013 IEEE 14th International Superconductive Electronics Conference (ISEC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Superconductive Electronics Conference (ISEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEC.2013.6604280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Superconductive Electronics Conference (ISEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEC.2013.6604280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of computational energy efficiency in single-flux-quantum electronics by implementing an integer-based hardware-algorithm
We designed and implemented a single-flux-quantum (SFQ) based hardware-algorithm known as the 3n+1 conjecture. The circuit consists of a 16-bit integer register, a high-frequency clock generator and a central processor. This design can perform with a maximum clock frequency of 90 GHz with a total power consumption of about 0.85 mW based on the AIST 10 kA/cm2 advanced Nb process. The power consumption was further reduced by using an LR-biasing approach.