基于RBF神经网络的六自由度自主水下航行器姿态控制方法

Xuewen Zhu, Fuxiao Tan
{"title":"基于RBF神经网络的六自由度自主水下航行器姿态控制方法","authors":"Xuewen Zhu, Fuxiao Tan","doi":"10.1145/3505688.3505700","DOIUrl":null,"url":null,"abstract":"This paper addresses a new adaptive control method based on radial basis function (RBF) neural network to control the attitude of the autonomous underwater vehicle. The mathematical model of the autonomous underwater vehicle is constructed and its kinematic model and dynamic model are established. The Lyapunov theory is used to analyze the convergence of the estimations. The advantages of this neural network are verified through simulation, which is helpful and enlightening for the design of the control system of the underwater vehicle.","PeriodicalId":375528,"journal":{"name":"Proceedings of the 7th International Conference on Robotics and Artificial Intelligence","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attitude Control Method of Six Degree of Freedom Autonomous Underwater Vehicle Based on RBF Neural Network\",\"authors\":\"Xuewen Zhu, Fuxiao Tan\",\"doi\":\"10.1145/3505688.3505700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses a new adaptive control method based on radial basis function (RBF) neural network to control the attitude of the autonomous underwater vehicle. The mathematical model of the autonomous underwater vehicle is constructed and its kinematic model and dynamic model are established. The Lyapunov theory is used to analyze the convergence of the estimations. The advantages of this neural network are verified through simulation, which is helpful and enlightening for the design of the control system of the underwater vehicle.\",\"PeriodicalId\":375528,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Robotics and Artificial Intelligence\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Robotics and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3505688.3505700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Robotics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3505688.3505700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于径向基函数(RBF)神经网络的自主水下航行器姿态自适应控制方法。建立了自主水下航行器的数学模型,建立了其运动学模型和动力学模型。利用李雅普诺夫理论分析了估计的收敛性。通过仿真验证了该神经网络的优点,对水下航行器控制系统的设计具有一定的帮助和启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attitude Control Method of Six Degree of Freedom Autonomous Underwater Vehicle Based on RBF Neural Network
This paper addresses a new adaptive control method based on radial basis function (RBF) neural network to control the attitude of the autonomous underwater vehicle. The mathematical model of the autonomous underwater vehicle is constructed and its kinematic model and dynamic model are established. The Lyapunov theory is used to analyze the convergence of the estimations. The advantages of this neural network are verified through simulation, which is helpful and enlightening for the design of the control system of the underwater vehicle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信