利用神经网络和仿射算法对模拟行为模型中的建模误差进行封闭

A. Krause, M. Olbrich, E. Barke
{"title":"利用神经网络和仿射算法对模拟行为模型中的建模误差进行封闭","authors":"A. Krause, M. Olbrich, E. Barke","doi":"10.1109/SMACD.2012.6339403","DOIUrl":null,"url":null,"abstract":"One all-time challenge in behavioral modeling is to minimize the modeling error while still profiting from a simplified representation of an analog circuit. In many cases the modeling error is known, but up to now it was only an indicator for the quality of the model. Its influence on errors during simulation could not be evaluated. We present a flow for the generation of behavioral models based on neural networks which uses affine arithmetic to guarantee enclosing the modeling error. We also demonstrate that the approach can also be applied to modeling the effects of parameter deviations.","PeriodicalId":181205,"journal":{"name":"2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enclosing the modeling error in analog behavioral models using neural networks and affine arithmetic\",\"authors\":\"A. Krause, M. Olbrich, E. Barke\",\"doi\":\"10.1109/SMACD.2012.6339403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One all-time challenge in behavioral modeling is to minimize the modeling error while still profiting from a simplified representation of an analog circuit. In many cases the modeling error is known, but up to now it was only an indicator for the quality of the model. Its influence on errors during simulation could not be evaluated. We present a flow for the generation of behavioral models based on neural networks which uses affine arithmetic to guarantee enclosing the modeling error. We also demonstrate that the approach can also be applied to modeling the effects of parameter deviations.\",\"PeriodicalId\":181205,\"journal\":{\"name\":\"2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMACD.2012.6339403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD.2012.6339403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

行为建模的一个长期挑战是最小化建模误差,同时仍然从模拟电路的简化表示中获益。在许多情况下,建模误差是已知的,但到目前为止,它只是模型质量的一个指标。无法评估其对模拟误差的影响。提出了一种基于神经网络的行为模型生成流程,该流程采用仿射算法保证了建模误差的封闭。我们还证明,该方法也可以应用于建模参数偏差的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enclosing the modeling error in analog behavioral models using neural networks and affine arithmetic
One all-time challenge in behavioral modeling is to minimize the modeling error while still profiting from a simplified representation of an analog circuit. In many cases the modeling error is known, but up to now it was only an indicator for the quality of the model. Its influence on errors during simulation could not be evaluated. We present a flow for the generation of behavioral models based on neural networks which uses affine arithmetic to guarantee enclosing the modeling error. We also demonstrate that the approach can also be applied to modeling the effects of parameter deviations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信