利用隐马尔可夫模型识别卡纳蒂克拉格

Amrith Krishna, P. V. Rajkumar, K. P. Saishankar, M. John
{"title":"利用隐马尔可夫模型识别卡纳蒂克拉格","authors":"Amrith Krishna, P. V. Rajkumar, K. P. Saishankar, M. John","doi":"10.1109/SAMI.2011.5738857","DOIUrl":null,"url":null,"abstract":"Raaga identification is one of the key areas for budding Carnatic musicians and avid listeners. Identification and knowledge of the raaga of a song not only implies knowledge of music but also helps establish the mood of a song. We propose to identify a Carnatic raaga by extracting from the music sample, information about the 12 distinguishable frequencies in an octave. The proposed technique is Specmurt analysis which involves the analysis of a signal in its log-frequency domain. The extracted information is fed to the Hidden Markov Model back-end system where each raaga has its associated model.","PeriodicalId":202398,"journal":{"name":"2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"2429 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Identification of Carnatic raagas using Hidden Markov Models\",\"authors\":\"Amrith Krishna, P. V. Rajkumar, K. P. Saishankar, M. John\",\"doi\":\"10.1109/SAMI.2011.5738857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Raaga identification is one of the key areas for budding Carnatic musicians and avid listeners. Identification and knowledge of the raaga of a song not only implies knowledge of music but also helps establish the mood of a song. We propose to identify a Carnatic raaga by extracting from the music sample, information about the 12 distinguishable frequencies in an octave. The proposed technique is Specmurt analysis which involves the analysis of a signal in its log-frequency domain. The extracted information is fed to the Hidden Markov Model back-end system where each raaga has its associated model.\",\"PeriodicalId\":202398,\"journal\":{\"name\":\"2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"2429 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2011.5738857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2011.5738857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

对于崭露头角的卡纳蒂克音乐家和狂热的听众来说,Raaga识别是关键领域之一。识别和了解一首歌曲的拉格不仅意味着音乐知识,而且有助于建立歌曲的情绪。我们建议通过从音乐样本中提取关于一个八度中12个可区分频率的信息来识别卡纳蒂克拉格。所提出的技术是频谱分析,涉及信号在其对数频域的分析。提取的信息被馈送到隐马尔可夫模型后端系统,其中每个raaga都有其相关的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Carnatic raagas using Hidden Markov Models
Raaga identification is one of the key areas for budding Carnatic musicians and avid listeners. Identification and knowledge of the raaga of a song not only implies knowledge of music but also helps establish the mood of a song. We propose to identify a Carnatic raaga by extracting from the music sample, information about the 12 distinguishable frequencies in an octave. The proposed technique is Specmurt analysis which involves the analysis of a signal in its log-frequency domain. The extracted information is fed to the Hidden Markov Model back-end system where each raaga has its associated model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信