Hyunmin Kim, Seokhie Hong, B. Preneel, I. Verbauwhede
{"title":"STBC:具有减少传播延迟的侧信道容错平衡电路","authors":"Hyunmin Kim, Seokhie Hong, B. Preneel, I. Verbauwhede","doi":"10.1109/ISVLSI.2017.22","DOIUrl":null,"url":null,"abstract":"Side channel attacks exploit the physical properties of integrated circuits to extract sensitive information. They are becoming increasingly important in the context of the deployment of the Internet of Things. One of the most effective countermeasures consists of modifying the logic circuits to reduce the leakage through side channels. This paper presents a novel side channel attack tolerant balanced circuit (STBC) based on a dynamic and differential configuration. Its main feature is the use of an improved binary decision diagram (BDD) with a multi-output function and internal gate sharing to reduce the implementation area. Compared to the earlier proposed dual-rail pre-charge circuit with binary decision diagram (DP-BDD) technique, an area reduction of 13.7% is achieved. A fixed versus random t-test shows that STBC obtains a substantial reduction in information leakage even though small peak exists. Further, its input variable dependence is comparable with that of a normal CMOS circuit and similar with DP-BDD.","PeriodicalId":187936,"journal":{"name":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"819 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"STBC: Side Channel Attack Tolerant Balanced Circuit with Reduced Propagation Delay\",\"authors\":\"Hyunmin Kim, Seokhie Hong, B. Preneel, I. Verbauwhede\",\"doi\":\"10.1109/ISVLSI.2017.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Side channel attacks exploit the physical properties of integrated circuits to extract sensitive information. They are becoming increasingly important in the context of the deployment of the Internet of Things. One of the most effective countermeasures consists of modifying the logic circuits to reduce the leakage through side channels. This paper presents a novel side channel attack tolerant balanced circuit (STBC) based on a dynamic and differential configuration. Its main feature is the use of an improved binary decision diagram (BDD) with a multi-output function and internal gate sharing to reduce the implementation area. Compared to the earlier proposed dual-rail pre-charge circuit with binary decision diagram (DP-BDD) technique, an area reduction of 13.7% is achieved. A fixed versus random t-test shows that STBC obtains a substantial reduction in information leakage even though small peak exists. Further, its input variable dependence is comparable with that of a normal CMOS circuit and similar with DP-BDD.\",\"PeriodicalId\":187936,\"journal\":{\"name\":\"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"819 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2017.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2017.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
STBC: Side Channel Attack Tolerant Balanced Circuit with Reduced Propagation Delay
Side channel attacks exploit the physical properties of integrated circuits to extract sensitive information. They are becoming increasingly important in the context of the deployment of the Internet of Things. One of the most effective countermeasures consists of modifying the logic circuits to reduce the leakage through side channels. This paper presents a novel side channel attack tolerant balanced circuit (STBC) based on a dynamic and differential configuration. Its main feature is the use of an improved binary decision diagram (BDD) with a multi-output function and internal gate sharing to reduce the implementation area. Compared to the earlier proposed dual-rail pre-charge circuit with binary decision diagram (DP-BDD) technique, an area reduction of 13.7% is achieved. A fixed versus random t-test shows that STBC obtains a substantial reduction in information leakage even though small peak exists. Further, its input variable dependence is comparable with that of a normal CMOS circuit and similar with DP-BDD.