随机折叠薄纸的最短路径分形维数

H. S. Sánchez Chávez, Leonardo Flores Cano
{"title":"随机折叠薄纸的最短路径分形维数","authors":"H. S. Sánchez Chávez, Leonardo Flores Cano","doi":"10.31349/revmexfis.64.415","DOIUrl":null,"url":null,"abstract":"We realized a study of the shortest path fractal dimension  in three dimensions for randomly crumpled paper balls. We took measurements between all possible combinations of pairs of points in crumpled and flat configurations, we found that a correlation between these distances exist, even more, such mean experimental value is dmin=1.2953±0.02 that coincides almost numerically with the very known 3D shortest path fractal dimension for percolation systems reported in computational simulations.","PeriodicalId":207412,"journal":{"name":"Revista Mexicana de Física","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shortest path fractal dimension for randomly crumpled thin paper sheets\",\"authors\":\"H. S. Sánchez Chávez, Leonardo Flores Cano\",\"doi\":\"10.31349/revmexfis.64.415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We realized a study of the shortest path fractal dimension  in three dimensions for randomly crumpled paper balls. We took measurements between all possible combinations of pairs of points in crumpled and flat configurations, we found that a correlation between these distances exist, even more, such mean experimental value is dmin=1.2953±0.02 that coincides almost numerically with the very known 3D shortest path fractal dimension for percolation systems reported in computational simulations.\",\"PeriodicalId\":207412,\"journal\":{\"name\":\"Revista Mexicana de Física\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana de Física\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfis.64.415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana de Física","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/revmexfis.64.415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

实现了三维随机折叠纸球的最短路径分形维数的研究。我们测量了所有可能的褶皱和平面构型点对的组合,我们发现这些距离之间存在相关性,甚至更多,这样的平均实验值dmin=1.2953±0.02,几乎与计算模拟中报道的众所周知的3D最短路径分形维数相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shortest path fractal dimension for randomly crumpled thin paper sheets
We realized a study of the shortest path fractal dimension  in three dimensions for randomly crumpled paper balls. We took measurements between all possible combinations of pairs of points in crumpled and flat configurations, we found that a correlation between these distances exist, even more, such mean experimental value is dmin=1.2953±0.02 that coincides almost numerically with the very known 3D shortest path fractal dimension for percolation systems reported in computational simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信