容错可重构扫描网络的综合

Sebastian Brandhofer, M. Kochte, H. Wunderlich
{"title":"容错可重构扫描网络的综合","authors":"Sebastian Brandhofer, M. Kochte, H. Wunderlich","doi":"10.23919/DATE48585.2020.9116525","DOIUrl":null,"url":null,"abstract":"On-chip instrumentation is mandatory for efficient bring-up, test and diagnosis, post-silicon validation, as well as in-field calibration, maintenance, and fault tolerance. Reconfigurable scan networks (RSNs) provide a scalable and efficient scan-based access mechanism to such instruments. The correct operation of this access mechanism is crucial for all manufacturing, bring-up and debug tasks as well as for in-field operation, but it can be affected by faults and design errors.This work develops for the first time fault-tolerant RSNs such that the resulting scan network still provides access to as many instruments as possible in presence of a fault. The work contributes a model and an algorithm to compute scan paths in faulty RSNs, a metric to quantify its fault tolerance and a synthesis algorithm that is based on graph connectivity and selective hardening of control logic in the scan network. Experimental results demonstrate that fault-tolerant RSNs can be synthesized with only moderate hardware overhead.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Synthesis of Fault-Tolerant Reconfigurable Scan Networks\",\"authors\":\"Sebastian Brandhofer, M. Kochte, H. Wunderlich\",\"doi\":\"10.23919/DATE48585.2020.9116525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-chip instrumentation is mandatory for efficient bring-up, test and diagnosis, post-silicon validation, as well as in-field calibration, maintenance, and fault tolerance. Reconfigurable scan networks (RSNs) provide a scalable and efficient scan-based access mechanism to such instruments. The correct operation of this access mechanism is crucial for all manufacturing, bring-up and debug tasks as well as for in-field operation, but it can be affected by faults and design errors.This work develops for the first time fault-tolerant RSNs such that the resulting scan network still provides access to as many instruments as possible in presence of a fault. The work contributes a model and an algorithm to compute scan paths in faulty RSNs, a metric to quantify its fault tolerance and a synthesis algorithm that is based on graph connectivity and selective hardening of control logic in the scan network. Experimental results demonstrate that fault-tolerant RSNs can be synthesized with only moderate hardware overhead.\",\"PeriodicalId\":289525,\"journal\":{\"name\":\"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DATE48585.2020.9116525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

片上仪器是强制性的有效的启动,测试和诊断,硅后验证,以及现场校准,维护和容错。可重构扫描网络(rsn)为此类仪器提供了可扩展且高效的基于扫描的访问机制。该访问机制的正确操作对于所有制造、启动和调试任务以及现场操作都至关重要,但它可能受到故障和设计错误的影响。这项工作首次开发了容错性rsn,使得在存在故障的情况下,产生的扫描网络仍然可以访问尽可能多的仪器。该工作提供了一个模型和算法来计算故障rsn中的扫描路径,一个度量来量化其容错性,以及一个基于图连通性和扫描网络中控制逻辑的选择性强化的综合算法。实验结果表明,在硬件开销适中的情况下,可以合成容错rsn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of Fault-Tolerant Reconfigurable Scan Networks
On-chip instrumentation is mandatory for efficient bring-up, test and diagnosis, post-silicon validation, as well as in-field calibration, maintenance, and fault tolerance. Reconfigurable scan networks (RSNs) provide a scalable and efficient scan-based access mechanism to such instruments. The correct operation of this access mechanism is crucial for all manufacturing, bring-up and debug tasks as well as for in-field operation, but it can be affected by faults and design errors.This work develops for the first time fault-tolerant RSNs such that the resulting scan network still provides access to as many instruments as possible in presence of a fault. The work contributes a model and an algorithm to compute scan paths in faulty RSNs, a metric to quantify its fault tolerance and a synthesis algorithm that is based on graph connectivity and selective hardening of control logic in the scan network. Experimental results demonstrate that fault-tolerant RSNs can be synthesized with only moderate hardware overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信