一种确定非线性振子周期稳态的新线性代数方法

Haotian Liu, Kim Batselier, N. Wong
{"title":"一种确定非线性振子周期稳态的新线性代数方法","authors":"Haotian Liu, Kim Batselier, N. Wong","doi":"10.1109/ICCAD.2014.7001416","DOIUrl":null,"url":null,"abstract":"Periodic steady-state (PSS) analysis of nonlinear oscillators has always been a challenging task in circuit simulation. We present a new way that uses numerical linear algebra to identify the PSS(s) of nonlinear circuits. The method works for both autonomous and excited systems. Using the harmonic balancing method, the solution of a nonlinear circuit can be represented by a system of multivariate polynomials. Then, a Macaulay matrix based root-finder is used to compute the Fourier series coefficients. The method avoids the difficult initial guess problem of existing numerical approaches. Numerical examples show the accuracy and feasibility over existing methods.","PeriodicalId":426584,"journal":{"name":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A novel linear algebra method for the determination of periodic steady states of nonlinear oscillators\",\"authors\":\"Haotian Liu, Kim Batselier, N. Wong\",\"doi\":\"10.1109/ICCAD.2014.7001416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodic steady-state (PSS) analysis of nonlinear oscillators has always been a challenging task in circuit simulation. We present a new way that uses numerical linear algebra to identify the PSS(s) of nonlinear circuits. The method works for both autonomous and excited systems. Using the harmonic balancing method, the solution of a nonlinear circuit can be represented by a system of multivariate polynomials. Then, a Macaulay matrix based root-finder is used to compute the Fourier series coefficients. The method avoids the difficult initial guess problem of existing numerical approaches. Numerical examples show the accuracy and feasibility over existing methods.\",\"PeriodicalId\":426584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2014.7001416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2014.7001416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

非线性振荡器的周期稳态分析一直是电路仿真中的一个难题。提出了一种利用数值线性代数辨识非线性电路PSS的新方法。该方法既适用于自主系统,也适用于受激系统。利用谐波平衡法,非线性电路的解可以用多元多项式系统来表示。然后,利用基于Macaulay矩阵的寻根器计算傅里叶级数系数。该方法避免了现有数值方法中初始猜测困难的问题。数值算例表明了该方法的准确性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel linear algebra method for the determination of periodic steady states of nonlinear oscillators
Periodic steady-state (PSS) analysis of nonlinear oscillators has always been a challenging task in circuit simulation. We present a new way that uses numerical linear algebra to identify the PSS(s) of nonlinear circuits. The method works for both autonomous and excited systems. Using the harmonic balancing method, the solution of a nonlinear circuit can be represented by a system of multivariate polynomials. Then, a Macaulay matrix based root-finder is used to compute the Fourier series coefficients. The method avoids the difficult initial guess problem of existing numerical approaches. Numerical examples show the accuracy and feasibility over existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信