{"title":"基于裂纹有限元模型的管道夹紧接头断裂力学疲劳评价","authors":"C. Sifford, A. Shirani","doi":"10.1115/PVP2018-85164","DOIUrl":null,"url":null,"abstract":"\n This paper presents the application of the rules from ASME Section VIII, Division 3 of the ASME Boiler and Pressure Vessel Code for a fracture mechanics evaluation to determine the damage tolerance and fatigue life of a flowline clamp connector. The guidelines from API 579-1 / ASME FFS-1 Fitness-For-Service for the stress analysis of a crack-like flaw have been considered for this assessment. The crack tip is modeled using a refined mesh around the crack tip that is referred to as a focused mesh approach in API 579-1 / ASME FFS-1. The driving force method is used as an alternative to the failure assessment diagram method to account for the influence of crack tip plasticity. The J integral is determined using elastic-plastic finite element analysis and converted to an equivalent stress intensity factor to be compared to the fracture toughness of the material. The fatigue life is calculated using the Paris Law equation and the stress intensity factor calculated from the finite element analysis. The allowable number of design cycles is determined using the safety factors required from Division 3 of the ASME Pressure Vessel Code.","PeriodicalId":174920,"journal":{"name":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture Mechanics Fatigue Evaluation of a Flowline Clamp Connector Using Finite Element Modeling of a Crack\",\"authors\":\"C. Sifford, A. Shirani\",\"doi\":\"10.1115/PVP2018-85164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents the application of the rules from ASME Section VIII, Division 3 of the ASME Boiler and Pressure Vessel Code for a fracture mechanics evaluation to determine the damage tolerance and fatigue life of a flowline clamp connector. The guidelines from API 579-1 / ASME FFS-1 Fitness-For-Service for the stress analysis of a crack-like flaw have been considered for this assessment. The crack tip is modeled using a refined mesh around the crack tip that is referred to as a focused mesh approach in API 579-1 / ASME FFS-1. The driving force method is used as an alternative to the failure assessment diagram method to account for the influence of crack tip plasticity. The J integral is determined using elastic-plastic finite element analysis and converted to an equivalent stress intensity factor to be compared to the fracture toughness of the material. The fatigue life is calculated using the Paris Law equation and the stress intensity factor calculated from the finite element analysis. The allowable number of design cycles is determined using the safety factors required from Division 3 of the ASME Pressure Vessel Code.\",\"PeriodicalId\":174920,\"journal\":{\"name\":\"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-85164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-85164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fracture Mechanics Fatigue Evaluation of a Flowline Clamp Connector Using Finite Element Modeling of a Crack
This paper presents the application of the rules from ASME Section VIII, Division 3 of the ASME Boiler and Pressure Vessel Code for a fracture mechanics evaluation to determine the damage tolerance and fatigue life of a flowline clamp connector. The guidelines from API 579-1 / ASME FFS-1 Fitness-For-Service for the stress analysis of a crack-like flaw have been considered for this assessment. The crack tip is modeled using a refined mesh around the crack tip that is referred to as a focused mesh approach in API 579-1 / ASME FFS-1. The driving force method is used as an alternative to the failure assessment diagram method to account for the influence of crack tip plasticity. The J integral is determined using elastic-plastic finite element analysis and converted to an equivalent stress intensity factor to be compared to the fracture toughness of the material. The fatigue life is calculated using the Paris Law equation and the stress intensity factor calculated from the finite element analysis. The allowable number of design cycles is determined using the safety factors required from Division 3 of the ASME Pressure Vessel Code.