自动开门和穿越

Benjamin Axelrod, Wesley H. Huang
{"title":"自动开门和穿越","authors":"Benjamin Axelrod, Wesley H. Huang","doi":"10.1109/TePRA.2015.7219686","DOIUrl":null,"url":null,"abstract":"In order to access many spaces in human environments, mobile robots need to be adept at using doors: opening the door, traversing (i.e., passing through) the doorway, and possibly closing the door afterwards. The challenges in these problems vary with the type of door (push-/pull-doors, self-closing mechanisms, etc.) and type of door handle (knob, lever, crashbar, etc.) In addition, the capabilities and limitations of the robot can have a strong effect on the techniques and strategies needed for these tasks. We have developed a system that autonomously opens and traverses push- and pull-doors, with or without self-closing mechanisms, with knobs or levers, using an iRobot 510 PackBot® (a nonholonomic mobile base with a 5 degree-of-freedom arm) and a custom gripper with a passive 2 degree-of-freedom wrist. To the best of our knowledge, our system is the first to demonstrate autonomous door opening and traversal on the most challenging combination of a pull-door with a self-closing mechanism. In this paper, we describe the operation of our system and the results of our experimental testing.","PeriodicalId":325788,"journal":{"name":"2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Autonomous door opening and traversal\",\"authors\":\"Benjamin Axelrod, Wesley H. Huang\",\"doi\":\"10.1109/TePRA.2015.7219686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to access many spaces in human environments, mobile robots need to be adept at using doors: opening the door, traversing (i.e., passing through) the doorway, and possibly closing the door afterwards. The challenges in these problems vary with the type of door (push-/pull-doors, self-closing mechanisms, etc.) and type of door handle (knob, lever, crashbar, etc.) In addition, the capabilities and limitations of the robot can have a strong effect on the techniques and strategies needed for these tasks. We have developed a system that autonomously opens and traverses push- and pull-doors, with or without self-closing mechanisms, with knobs or levers, using an iRobot 510 PackBot® (a nonholonomic mobile base with a 5 degree-of-freedom arm) and a custom gripper with a passive 2 degree-of-freedom wrist. To the best of our knowledge, our system is the first to demonstrate autonomous door opening and traversal on the most challenging combination of a pull-door with a self-closing mechanism. In this paper, we describe the operation of our system and the results of our experimental testing.\",\"PeriodicalId\":325788,\"journal\":{\"name\":\"2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)\",\"volume\":\"259 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TePRA.2015.7219686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TePRA.2015.7219686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

为了进入人类环境中的许多空间,移动机器人需要熟练地使用门:打开门,穿过(即通过)门口,然后可能关门。这些问题中的挑战因门的类型(推/拉门,自闭机构等)和门把手的类型(旋钮,杠杆,碰撞杆等)而异。此外,机器人的能力和局限性会对这些任务所需的技术和策略产生强烈影响。我们开发了一种系统,可以自主打开和穿越推拉门,有或没有自关闭机制,有旋柄或杠杆,使用iRobot 510 PackBot®(一个具有5自由度手臂的非完整移动基座)和一个具有被动2自由度手腕的定制夹具。据我们所知,我们的系统是第一个在最具挑战性的拉门和自闭机构组合上演示自动开门和穿越的系统。在本文中,我们描述了我们的系统的工作原理和我们的实验测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous door opening and traversal
In order to access many spaces in human environments, mobile robots need to be adept at using doors: opening the door, traversing (i.e., passing through) the doorway, and possibly closing the door afterwards. The challenges in these problems vary with the type of door (push-/pull-doors, self-closing mechanisms, etc.) and type of door handle (knob, lever, crashbar, etc.) In addition, the capabilities and limitations of the robot can have a strong effect on the techniques and strategies needed for these tasks. We have developed a system that autonomously opens and traverses push- and pull-doors, with or without self-closing mechanisms, with knobs or levers, using an iRobot 510 PackBot® (a nonholonomic mobile base with a 5 degree-of-freedom arm) and a custom gripper with a passive 2 degree-of-freedom wrist. To the best of our knowledge, our system is the first to demonstrate autonomous door opening and traversal on the most challenging combination of a pull-door with a self-closing mechanism. In this paper, we describe the operation of our system and the results of our experimental testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信