{"title":"用闭合解的无穷范数方法改进电动汽车横向动力学控制","authors":"A. Viehweider, V. Salvucci, Y. Hori, T. Koseki","doi":"10.1109/ICMECH.2013.6518568","DOIUrl":null,"url":null,"abstract":"Over-actuated EVs offer a high degree of freedoms that can be exploited for better vehicle dynamic behaviour, energy efficiency, vehicle safety and comfort. If the cost of the actuators can be brought to a reasonable level, then sophisticated control algorithm should make the most out of the over-actuation property. A key aspect in lateral dynamics control of an over actuated EV with In Wheel motors and active front and/or rear steering is the so called control allocation problem. Often such problems are solved using the 2 norm (weighted least square solution) as it is expressed in a closed form-solution and has a low fixed number of arithmetic operations suited for real time control. In this work a closed-form solution based on the infinity norm for the case of 2 to 3 control allocation problem in EV lateral dynamic control is derived, and validated by means of simulation runs considering an electric vehicle with In-Wheel-Motor traction and active front and rear steering. During a “sine with a dwell” steering command at a constant velocity the superiority of the proposed algorithm based on the infinity norm is shown.","PeriodicalId":448152,"journal":{"name":"2013 IEEE International Conference on Mechatronics (ICM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving EV lateral dynamics control using infinity norm approach with closed-form solution\",\"authors\":\"A. Viehweider, V. Salvucci, Y. Hori, T. Koseki\",\"doi\":\"10.1109/ICMECH.2013.6518568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over-actuated EVs offer a high degree of freedoms that can be exploited for better vehicle dynamic behaviour, energy efficiency, vehicle safety and comfort. If the cost of the actuators can be brought to a reasonable level, then sophisticated control algorithm should make the most out of the over-actuation property. A key aspect in lateral dynamics control of an over actuated EV with In Wheel motors and active front and/or rear steering is the so called control allocation problem. Often such problems are solved using the 2 norm (weighted least square solution) as it is expressed in a closed form-solution and has a low fixed number of arithmetic operations suited for real time control. In this work a closed-form solution based on the infinity norm for the case of 2 to 3 control allocation problem in EV lateral dynamic control is derived, and validated by means of simulation runs considering an electric vehicle with In-Wheel-Motor traction and active front and rear steering. During a “sine with a dwell” steering command at a constant velocity the superiority of the proposed algorithm based on the infinity norm is shown.\",\"PeriodicalId\":448152,\"journal\":{\"name\":\"2013 IEEE International Conference on Mechatronics (ICM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Mechatronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMECH.2013.6518568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2013.6518568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving EV lateral dynamics control using infinity norm approach with closed-form solution
Over-actuated EVs offer a high degree of freedoms that can be exploited for better vehicle dynamic behaviour, energy efficiency, vehicle safety and comfort. If the cost of the actuators can be brought to a reasonable level, then sophisticated control algorithm should make the most out of the over-actuation property. A key aspect in lateral dynamics control of an over actuated EV with In Wheel motors and active front and/or rear steering is the so called control allocation problem. Often such problems are solved using the 2 norm (weighted least square solution) as it is expressed in a closed form-solution and has a low fixed number of arithmetic operations suited for real time control. In this work a closed-form solution based on the infinity norm for the case of 2 to 3 control allocation problem in EV lateral dynamic control is derived, and validated by means of simulation runs considering an electric vehicle with In-Wheel-Motor traction and active front and rear steering. During a “sine with a dwell” steering command at a constant velocity the superiority of the proposed algorithm based on the infinity norm is shown.