{"title":"一种用于多通道多无线电无线Mesh网络中业务区分的跨层体系结构","authors":"L. Bononi, M. D. Felice, A. Molinaro, S. Pizzi","doi":"10.1109/ISWCS.2009.5285265","DOIUrl":null,"url":null,"abstract":"Due to their self-configuration and auto-configuration properties, Wireless Mesh Networks (WMNs) are expected to support a plethora of applications, including traditional Internet services and novel multimedia applications. Service differentiation is needed to support applications with different Quality of Service (QoS) requirements. In this paper, we propose a novel cross-layer framework that provides efficient communication and service differentiation in multi-radio multichannel WMNs. The proposed solution includes a distributed channel allocation scheme, integrated in the routing protocol, and a multi-channel MAC protocol, inspired to the IEEE 802.11e EDCA (Enhanced Distributed Channel Access). At the MAC layer, we propose “fast-forwarding” mechanisms to reduce the contention delay of delay-sensitive applications in multi-hop topologies. At the network layer, the channel allocation scheme aims at loading channels with an equal number of per-class traffic flows. The simulation results confirm the effectiveness of the proposed scheme in providing differentiated treatment to traffic classes with different QoS requirements.","PeriodicalId":344018,"journal":{"name":"2009 6th International Symposium on Wireless Communication Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A cross-layer architecture for service differentiation in multi-channel multi-radio Wireless Mesh Networks\",\"authors\":\"L. Bononi, M. D. Felice, A. Molinaro, S. Pizzi\",\"doi\":\"10.1109/ISWCS.2009.5285265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to their self-configuration and auto-configuration properties, Wireless Mesh Networks (WMNs) are expected to support a plethora of applications, including traditional Internet services and novel multimedia applications. Service differentiation is needed to support applications with different Quality of Service (QoS) requirements. In this paper, we propose a novel cross-layer framework that provides efficient communication and service differentiation in multi-radio multichannel WMNs. The proposed solution includes a distributed channel allocation scheme, integrated in the routing protocol, and a multi-channel MAC protocol, inspired to the IEEE 802.11e EDCA (Enhanced Distributed Channel Access). At the MAC layer, we propose “fast-forwarding” mechanisms to reduce the contention delay of delay-sensitive applications in multi-hop topologies. At the network layer, the channel allocation scheme aims at loading channels with an equal number of per-class traffic flows. The simulation results confirm the effectiveness of the proposed scheme in providing differentiated treatment to traffic classes with different QoS requirements.\",\"PeriodicalId\":344018,\"journal\":{\"name\":\"2009 6th International Symposium on Wireless Communication Systems\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 6th International Symposium on Wireless Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS.2009.5285265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 6th International Symposium on Wireless Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2009.5285265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A cross-layer architecture for service differentiation in multi-channel multi-radio Wireless Mesh Networks
Due to their self-configuration and auto-configuration properties, Wireless Mesh Networks (WMNs) are expected to support a plethora of applications, including traditional Internet services and novel multimedia applications. Service differentiation is needed to support applications with different Quality of Service (QoS) requirements. In this paper, we propose a novel cross-layer framework that provides efficient communication and service differentiation in multi-radio multichannel WMNs. The proposed solution includes a distributed channel allocation scheme, integrated in the routing protocol, and a multi-channel MAC protocol, inspired to the IEEE 802.11e EDCA (Enhanced Distributed Channel Access). At the MAC layer, we propose “fast-forwarding” mechanisms to reduce the contention delay of delay-sensitive applications in multi-hop topologies. At the network layer, the channel allocation scheme aims at loading channels with an equal number of per-class traffic flows. The simulation results confirm the effectiveness of the proposed scheme in providing differentiated treatment to traffic classes with different QoS requirements.