{"title":"利用机器学习预测海湾合作委员会(GCC)国家COVID-19感染情况","authors":"L. Ismail, Huned Materwala, Alain Hennebelle","doi":"10.1145/3474963.3475844","DOIUrl":null,"url":null,"abstract":"COVID-19 has infected more than 68 million people worldwide since it was first detected about a year ago. Machine learning time series models have been implemented to forecast COVID-19 infections. In this paper, we develop time series models for the Gulf Cooperation Council (GCC) countries using the public COVID-19 dataset from Johns Hopkins. The dataset set includes the one-year cumulative COVID-19 cases between 22/01/2020 to 22/01/2021. We developed different models for the countries under study based on the spatial distribution of the infection data. Our experimental results show that the developed models can forecast COVID-19 infections with high precision.","PeriodicalId":277800,"journal":{"name":"Proceedings of the 13th International Conference on Computer Modeling and Simulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Forecasting COVID-19 Infections in Gulf Cooperation Council (GCC) Countries using Machine Learning\",\"authors\":\"L. Ismail, Huned Materwala, Alain Hennebelle\",\"doi\":\"10.1145/3474963.3475844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 has infected more than 68 million people worldwide since it was first detected about a year ago. Machine learning time series models have been implemented to forecast COVID-19 infections. In this paper, we develop time series models for the Gulf Cooperation Council (GCC) countries using the public COVID-19 dataset from Johns Hopkins. The dataset set includes the one-year cumulative COVID-19 cases between 22/01/2020 to 22/01/2021. We developed different models for the countries under study based on the spatial distribution of the infection data. Our experimental results show that the developed models can forecast COVID-19 infections with high precision.\",\"PeriodicalId\":277800,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Computer Modeling and Simulation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474963.3475844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474963.3475844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forecasting COVID-19 Infections in Gulf Cooperation Council (GCC) Countries using Machine Learning
COVID-19 has infected more than 68 million people worldwide since it was first detected about a year ago. Machine learning time series models have been implemented to forecast COVID-19 infections. In this paper, we develop time series models for the Gulf Cooperation Council (GCC) countries using the public COVID-19 dataset from Johns Hopkins. The dataset set includes the one-year cumulative COVID-19 cases between 22/01/2020 to 22/01/2021. We developed different models for the countries under study based on the spatial distribution of the infection data. Our experimental results show that the developed models can forecast COVID-19 infections with high precision.