{"title":"具有异质集成新型测量工具的高通量直接自适应成像系统","authors":"S. Majima, A. Hatano, S. Takada","doi":"10.1109/ISSM51728.2020.9377529","DOIUrl":null,"url":null,"abstract":"Demand of heterogeneous integration has increased for high-performance computing devices, utilizing panel level packaging and high-resolution lithography. We have developed a flexible direct imaging tool and a high-speed chip position measurement tool for Fan-Out Panel Level Packaging (FO-PLP). The imaging tool is capable of 2/2μm Line/Space resolution, chip displacement exposure compensation and includes an Auto-Wiring function which can expose patterns to connect individual chips independent of position displacement. With measurement tool throughput of 30 Panel Per Hour (PPH), the combination of these tools enables high-throughput adaptive patterning for cost effective heterogeneous integration.","PeriodicalId":270309,"journal":{"name":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High- Throughput Direct Adaptive Imaging System with Novel Measurement Tool for Heterogeneous Integration\",\"authors\":\"S. Majima, A. Hatano, S. Takada\",\"doi\":\"10.1109/ISSM51728.2020.9377529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand of heterogeneous integration has increased for high-performance computing devices, utilizing panel level packaging and high-resolution lithography. We have developed a flexible direct imaging tool and a high-speed chip position measurement tool for Fan-Out Panel Level Packaging (FO-PLP). The imaging tool is capable of 2/2μm Line/Space resolution, chip displacement exposure compensation and includes an Auto-Wiring function which can expose patterns to connect individual chips independent of position displacement. With measurement tool throughput of 30 Panel Per Hour (PPH), the combination of these tools enables high-throughput adaptive patterning for cost effective heterogeneous integration.\",\"PeriodicalId\":270309,\"journal\":{\"name\":\"2020 International Symposium on Semiconductor Manufacturing (ISSM)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Symposium on Semiconductor Manufacturing (ISSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSM51728.2020.9377529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM51728.2020.9377529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High- Throughput Direct Adaptive Imaging System with Novel Measurement Tool for Heterogeneous Integration
Demand of heterogeneous integration has increased for high-performance computing devices, utilizing panel level packaging and high-resolution lithography. We have developed a flexible direct imaging tool and a high-speed chip position measurement tool for Fan-Out Panel Level Packaging (FO-PLP). The imaging tool is capable of 2/2μm Line/Space resolution, chip displacement exposure compensation and includes an Auto-Wiring function which can expose patterns to connect individual chips independent of position displacement. With measurement tool throughput of 30 Panel Per Hour (PPH), the combination of these tools enables high-throughput adaptive patterning for cost effective heterogeneous integration.