VKontakte社区的跨地区情感分析:典型的克拉斯诺达尔与典型的克麦罗沃

N. Ryabchenko, O. Malysheva
{"title":"VKontakte社区的跨地区情感分析:典型的克拉斯诺达尔与典型的克麦罗沃","authors":"N. Ryabchenko, O. Malysheva","doi":"10.21603/2782-4799-2022-1-4-215-220","DOIUrl":null,"url":null,"abstract":"This research tested a complex analytical method based on semantic modeling of discursive fields and network analysis that can be applied to networked linguistic data. The copyright software package Monitoring and Analysis of Social Networks, Internet Communities, and Users provided automatic data processing to restore the semantic core of the discursive fields generated by Typical Krasnodar and Typical Kemerovo online communities in 2021–2022. The analysis was visualized as social graphs and semantic core models. It identified a number of sensitive topics that generated a lot of feedback. The method also proved efficient in predicting cultural and socio-political trends. The complex methodology provided rapid identification of amplified discursive activity, conditions for social unrest, and bifurcation points for destructive social practices. The results may contribute to effective information management and social strain relief in the regions through discursive control of online communication.","PeriodicalId":359429,"journal":{"name":"Virtual Communication and Social Networks","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Regional Sentiment Analysis of VKontakte Communities: Typical Krasnodar vs. Typical Kemerovo\",\"authors\":\"N. Ryabchenko, O. Malysheva\",\"doi\":\"10.21603/2782-4799-2022-1-4-215-220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research tested a complex analytical method based on semantic modeling of discursive fields and network analysis that can be applied to networked linguistic data. The copyright software package Monitoring and Analysis of Social Networks, Internet Communities, and Users provided automatic data processing to restore the semantic core of the discursive fields generated by Typical Krasnodar and Typical Kemerovo online communities in 2021–2022. The analysis was visualized as social graphs and semantic core models. It identified a number of sensitive topics that generated a lot of feedback. The method also proved efficient in predicting cultural and socio-political trends. The complex methodology provided rapid identification of amplified discursive activity, conditions for social unrest, and bifurcation points for destructive social practices. The results may contribute to effective information management and social strain relief in the regions through discursive control of online communication.\",\"PeriodicalId\":359429,\"journal\":{\"name\":\"Virtual Communication and Social Networks\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Communication and Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21603/2782-4799-2022-1-4-215-220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Communication and Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21603/2782-4799-2022-1-4-215-220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究测试了一种基于话语场语义建模和网络分析的复杂分析方法,该方法可以应用于网络语言数据。版权软件包《社交网络、互联网社区和用户的监测与分析》提供了自动数据处理,以恢复2021-2022年典型克拉斯诺达尔和典型克麦罗沃在线社区生成的话语场的语义核心。分析结果被可视化为社交图和语义核心模型。它确定了一些产生了大量反馈的敏感话题。这种方法在预测文化和社会政治趋势方面也被证明是有效的。复杂的方法论提供了对放大的话语活动、社会动荡的条件和破坏性社会实践的分岔点的快速识别。研究结果可能有助于通过对网络传播的话语控制来有效地进行信息管理和缓解社会压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Regional Sentiment Analysis of VKontakte Communities: Typical Krasnodar vs. Typical Kemerovo
This research tested a complex analytical method based on semantic modeling of discursive fields and network analysis that can be applied to networked linguistic data. The copyright software package Monitoring and Analysis of Social Networks, Internet Communities, and Users provided automatic data processing to restore the semantic core of the discursive fields generated by Typical Krasnodar and Typical Kemerovo online communities in 2021–2022. The analysis was visualized as social graphs and semantic core models. It identified a number of sensitive topics that generated a lot of feedback. The method also proved efficient in predicting cultural and socio-political trends. The complex methodology provided rapid identification of amplified discursive activity, conditions for social unrest, and bifurcation points for destructive social practices. The results may contribute to effective information management and social strain relief in the regions through discursive control of online communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信